Cyclic changes in NMDA receptor activation in hippocampal CA1 neurons after ischemia

We studied N-methyl- d-aspartate (NMDA) receptor-mediated synaptic potentials in CA1 pyramidal neurons using hippocampal slices of gerbils after transient forebrain ischemia. In the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and bicuculline, stimulation of Schaffer collateral/commissura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience research 1997-12, Vol.29 (4), p.273-281
Hauptverfasser: Oguro, K, Miyawaki, T, Cho, H, Yokota, H, Masuzawa, T, Tsubokawa, H, Kawai, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied N-methyl- d-aspartate (NMDA) receptor-mediated synaptic potentials in CA1 pyramidal neurons using hippocampal slices of gerbils after transient forebrain ischemia. In the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and bicuculline, stimulation of Schaffer collateral/commissural fibers induced field excitatory postsynaptic potentials (fEPSP) activated by NMDA receptors. We found that in many slices after ischemia, prolonged low-frequency stimulation (0.1–10 Hz) caused repeated depression and potentiation of the NMDA-mediated fEPSP. Changes in fEPSP amplitude were dependent on stimulus frequency and the cycle frequency ranged from 0.08 to 2.5 cycles/min. These cyclic changes were blocked by application of BAPTA-AM, a membrane-permeable Ca 2+ chelator, but were little affected by application of verapamil or by lowering the Ca 2+ in bathing solution. Intracellular recordings from CA1 neurons revealed that low-frequency stimulation caused periodic depolarizations of membrane potential accompanied by depression of the excitatory postsynaptic potentials. The cyclic changes of fEPSPs were blocked by inhibitors of protein kinase C (PKC) but were unaffected by inhibitors of Ca 2+/calmodulin-dependent protein kinase II (CaMKII) or myosin light-chain kinase (MLCK). These results suggest that stimulus-dependent NMDA-receptor activation, mediated by PKC, takes place in the postischemic CA1 neurons and that the cyclic change may reflect abnormal intracellular Ca 2+ signaling processes leading to neuronal degeneration.
ISSN:0168-0102
1872-8111
DOI:10.1016/S0168-0102(97)00096-5