Hormonal and metabolic changes during exercise in cirrhotic patients

The metabolic response to exercise was compared in 10 cirrhotic patients (P) in a stable clinical condition and in 6 sedentary, age-matched, normal subjects (C) performing 32 minutes of treadmill exercise with the same constant workload corresponding to three to four times their resting oxygen uptak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolism, clinical and experimental clinical and experimental, 1990, Vol.39 (1), p.18-24
Hauptverfasser: Campillo, Bernard, Chapelain, Chantal, Bonnet, Jean Claude, Frisdal, Eric, Devanlay, Michel, Bouissou, Philippe, Fouet, Paul, Wirquin, Evelyne, Atlan, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 18
container_title Metabolism, clinical and experimental
container_volume 39
creator Campillo, Bernard
Chapelain, Chantal
Bonnet, Jean Claude
Frisdal, Eric
Devanlay, Michel
Bouissou, Philippe
Fouet, Paul
Wirquin, Evelyne
Atlan, Guy
description The metabolic response to exercise was compared in 10 cirrhotic patients (P) in a stable clinical condition and in 6 sedentary, age-matched, normal subjects (C) performing 32 minutes of treadmill exercise with the same constant workload corresponding to three to four times their resting oxygen uptake. Taking indirect calorimetry as reference, respiratory exchanges indicated that cirrhotic patients consumed carbohydrates almost exclusively, unlike the normal controls, who consumed lipids and glucids in about the same proportions (RQ : 0.98 ± 0.04 v 0.87 ± 0.04, P < .0001). In the patients, this carbohydrate path of exercise metabolism lowered glycemia from the resting value of 5.23 ± 0.16 mmol/L to 4.03 ± 0.37 mmol/L ( P < .0001) and raised the plasma lactate concentration from 2.08 ± 0.24 mmol/L at rest to 3.48 ± 0.32 mmol/L at the eighth minute of exercise ( P < .001), thus suggesting defective liver glyconeogenesis. Fatty free acids and glycerol remained almost constant during exercise, whereas catecholamines increased. Insulin levels were high in patients at rest (67.1 ± 14.5 U/mL v 15.1 ± 3.5 U/mL); they declined sharply at the onset of exercise but nevertheless remained high compared to those observed in the controls ( P < .0001). Glucagon increased in exercising patients from 88.3 ± 21.3 pg/mL to 127.4 ± 30.6 pg/mL (NS). Esterified plasma carnitine declined in the patients from 13.0 ± 2.2 μmol/L to 8.6 ± 1.5 μmol/L ( P < .05). Several possibilities might account for these results: (1) insulin and exercise might act synergistically to increase glucose use; (2) insulin might not allow other hormones to express their effects, hence the lipolysis inhibition and reduced liver glycogen release; (3) the decrease in esterified carnitine might be due either to hyperinsulinemia and small lipid use or to some defect of synthesis connected with liver cell damage, a defect that becomes evident when carnitine requirements increase.
doi_str_mv 10.1016/0026-0495(90)90142-Y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79537493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>002604959090142Y</els_id><sourcerecordid>79537493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-c00c8a445b3addd8c5bd487705896844582118d6810dde0dd8c98491631a3553</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWqv_QGEPInpYnWyy2eQiSP0EwUsvPYU0mWpkP2qyK_rvTW3p0dPAzPO-DA8hJxSuKFBxDVCIHLgqLxRcKqC8yGc7ZERLVuRSAOyS0RY5IIcxfgBAVUmxT_YLDkxQOSJ3T11outbUmWld1mBv5l3tbWbfTfuGMXND8O1bht8YrI-Y-TazPoT3rk_Q0vQe2z4ekb2FqSMeb-aYTB_up5On_OX18Xly-5JbLmmfWwArDeflnBnnnLTl3HFZVVBKJWTay4JS6YSk4BzCilCSKyoYNaws2Zicr2uXofscMPa68dFiXZsWuyHqSpWs4oolkK9BG7oYAy70MvjGhB9NQa_c6ZUYvRKjFeg_d3qWYqeb_mHeoNuGNrLS_WxzN9GaehFMm5xsMSGUYlIl7GaNYVLx5THoaJMmi84HtL12nf__j1-jmIm6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79537493</pqid></control><display><type>article</type><title>Hormonal and metabolic changes during exercise in cirrhotic patients</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Campillo, Bernard ; Chapelain, Chantal ; Bonnet, Jean Claude ; Frisdal, Eric ; Devanlay, Michel ; Bouissou, Philippe ; Fouet, Paul ; Wirquin, Evelyne ; Atlan, Guy</creator><creatorcontrib>Campillo, Bernard ; Chapelain, Chantal ; Bonnet, Jean Claude ; Frisdal, Eric ; Devanlay, Michel ; Bouissou, Philippe ; Fouet, Paul ; Wirquin, Evelyne ; Atlan, Guy</creatorcontrib><description>The metabolic response to exercise was compared in 10 cirrhotic patients (P) in a stable clinical condition and in 6 sedentary, age-matched, normal subjects (C) performing 32 minutes of treadmill exercise with the same constant workload corresponding to three to four times their resting oxygen uptake. Taking indirect calorimetry as reference, respiratory exchanges indicated that cirrhotic patients consumed carbohydrates almost exclusively, unlike the normal controls, who consumed lipids and glucids in about the same proportions (RQ : 0.98 ± 0.04 v 0.87 ± 0.04, P &lt; .0001). In the patients, this carbohydrate path of exercise metabolism lowered glycemia from the resting value of 5.23 ± 0.16 mmol/L to 4.03 ± 0.37 mmol/L ( P &lt; .0001) and raised the plasma lactate concentration from 2.08 ± 0.24 mmol/L at rest to 3.48 ± 0.32 mmol/L at the eighth minute of exercise ( P &lt; .001), thus suggesting defective liver glyconeogenesis. Fatty free acids and glycerol remained almost constant during exercise, whereas catecholamines increased. Insulin levels were high in patients at rest (67.1 ± 14.5 U/mL v 15.1 ± 3.5 U/mL); they declined sharply at the onset of exercise but nevertheless remained high compared to those observed in the controls ( P &lt; .0001). Glucagon increased in exercising patients from 88.3 ± 21.3 pg/mL to 127.4 ± 30.6 pg/mL (NS). Esterified plasma carnitine declined in the patients from 13.0 ± 2.2 μmol/L to 8.6 ± 1.5 μmol/L ( P &lt; .05). Several possibilities might account for these results: (1) insulin and exercise might act synergistically to increase glucose use; (2) insulin might not allow other hormones to express their effects, hence the lipolysis inhibition and reduced liver glycogen release; (3) the decrease in esterified carnitine might be due either to hyperinsulinemia and small lipid use or to some defect of synthesis connected with liver cell damage, a defect that becomes evident when carnitine requirements increase.</description><identifier>ISSN: 0026-0495</identifier><identifier>EISSN: 1532-8600</identifier><identifier>DOI: 10.1016/0026-0495(90)90142-Y</identifier><identifier>PMID: 2403618</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Age Factors ; Biological and medical sciences ; Blood Glucose - analysis ; Calorimetry, Indirect ; Carnitine - blood ; Catecholamines - blood ; Eating ; Exercise ; Fatty Acids, Nonesterified - blood ; Glucagon - blood ; Glycerol - blood ; Humans ; Insulin - blood ; Lactates - blood ; Liver Cirrhosis - blood ; Liver Cirrhosis - metabolism ; Male ; Medical sciences ; Metabolic diseases ; Middle Aged ; Other nutritional diseases (malnutrition, nutritional and vitamin deficiencies...) ; Oxygen Consumption ; Respiratory Transport ; Rest</subject><ispartof>Metabolism, clinical and experimental, 1990, Vol.39 (1), p.18-24</ispartof><rights>1990</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-c00c8a445b3addd8c5bd487705896844582118d6810dde0dd8c98491631a3553</citedby><cites>FETCH-LOGICAL-c481t-c00c8a445b3addd8c5bd487705896844582118d6810dde0dd8c98491631a3553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/002604959090142Y$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6699389$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2403618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campillo, Bernard</creatorcontrib><creatorcontrib>Chapelain, Chantal</creatorcontrib><creatorcontrib>Bonnet, Jean Claude</creatorcontrib><creatorcontrib>Frisdal, Eric</creatorcontrib><creatorcontrib>Devanlay, Michel</creatorcontrib><creatorcontrib>Bouissou, Philippe</creatorcontrib><creatorcontrib>Fouet, Paul</creatorcontrib><creatorcontrib>Wirquin, Evelyne</creatorcontrib><creatorcontrib>Atlan, Guy</creatorcontrib><title>Hormonal and metabolic changes during exercise in cirrhotic patients</title><title>Metabolism, clinical and experimental</title><addtitle>Metabolism</addtitle><description>The metabolic response to exercise was compared in 10 cirrhotic patients (P) in a stable clinical condition and in 6 sedentary, age-matched, normal subjects (C) performing 32 minutes of treadmill exercise with the same constant workload corresponding to three to four times their resting oxygen uptake. Taking indirect calorimetry as reference, respiratory exchanges indicated that cirrhotic patients consumed carbohydrates almost exclusively, unlike the normal controls, who consumed lipids and glucids in about the same proportions (RQ : 0.98 ± 0.04 v 0.87 ± 0.04, P &lt; .0001). In the patients, this carbohydrate path of exercise metabolism lowered glycemia from the resting value of 5.23 ± 0.16 mmol/L to 4.03 ± 0.37 mmol/L ( P &lt; .0001) and raised the plasma lactate concentration from 2.08 ± 0.24 mmol/L at rest to 3.48 ± 0.32 mmol/L at the eighth minute of exercise ( P &lt; .001), thus suggesting defective liver glyconeogenesis. Fatty free acids and glycerol remained almost constant during exercise, whereas catecholamines increased. Insulin levels were high in patients at rest (67.1 ± 14.5 U/mL v 15.1 ± 3.5 U/mL); they declined sharply at the onset of exercise but nevertheless remained high compared to those observed in the controls ( P &lt; .0001). Glucagon increased in exercising patients from 88.3 ± 21.3 pg/mL to 127.4 ± 30.6 pg/mL (NS). Esterified plasma carnitine declined in the patients from 13.0 ± 2.2 μmol/L to 8.6 ± 1.5 μmol/L ( P &lt; .05). Several possibilities might account for these results: (1) insulin and exercise might act synergistically to increase glucose use; (2) insulin might not allow other hormones to express their effects, hence the lipolysis inhibition and reduced liver glycogen release; (3) the decrease in esterified carnitine might be due either to hyperinsulinemia and small lipid use or to some defect of synthesis connected with liver cell damage, a defect that becomes evident when carnitine requirements increase.</description><subject>Age Factors</subject><subject>Biological and medical sciences</subject><subject>Blood Glucose - analysis</subject><subject>Calorimetry, Indirect</subject><subject>Carnitine - blood</subject><subject>Catecholamines - blood</subject><subject>Eating</subject><subject>Exercise</subject><subject>Fatty Acids, Nonesterified - blood</subject><subject>Glucagon - blood</subject><subject>Glycerol - blood</subject><subject>Humans</subject><subject>Insulin - blood</subject><subject>Lactates - blood</subject><subject>Liver Cirrhosis - blood</subject><subject>Liver Cirrhosis - metabolism</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Middle Aged</subject><subject>Other nutritional diseases (malnutrition, nutritional and vitamin deficiencies...)</subject><subject>Oxygen Consumption</subject><subject>Respiratory Transport</subject><subject>Rest</subject><issn>0026-0495</issn><issn>1532-8600</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoWqv_QGEPInpYnWyy2eQiSP0EwUsvPYU0mWpkP2qyK_rvTW3p0dPAzPO-DA8hJxSuKFBxDVCIHLgqLxRcKqC8yGc7ZERLVuRSAOyS0RY5IIcxfgBAVUmxT_YLDkxQOSJ3T11outbUmWld1mBv5l3tbWbfTfuGMXND8O1bht8YrI-Y-TazPoT3rk_Q0vQe2z4ekb2FqSMeb-aYTB_up5On_OX18Xly-5JbLmmfWwArDeflnBnnnLTl3HFZVVBKJWTay4JS6YSk4BzCilCSKyoYNaws2Zicr2uXofscMPa68dFiXZsWuyHqSpWs4oolkK9BG7oYAy70MvjGhB9NQa_c6ZUYvRKjFeg_d3qWYqeb_mHeoNuGNrLS_WxzN9GaehFMm5xsMSGUYlIl7GaNYVLx5THoaJMmi84HtL12nf__j1-jmIm6</recordid><startdate>1990</startdate><enddate>1990</enddate><creator>Campillo, Bernard</creator><creator>Chapelain, Chantal</creator><creator>Bonnet, Jean Claude</creator><creator>Frisdal, Eric</creator><creator>Devanlay, Michel</creator><creator>Bouissou, Philippe</creator><creator>Fouet, Paul</creator><creator>Wirquin, Evelyne</creator><creator>Atlan, Guy</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>1990</creationdate><title>Hormonal and metabolic changes during exercise in cirrhotic patients</title><author>Campillo, Bernard ; Chapelain, Chantal ; Bonnet, Jean Claude ; Frisdal, Eric ; Devanlay, Michel ; Bouissou, Philippe ; Fouet, Paul ; Wirquin, Evelyne ; Atlan, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-c00c8a445b3addd8c5bd487705896844582118d6810dde0dd8c98491631a3553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Age Factors</topic><topic>Biological and medical sciences</topic><topic>Blood Glucose - analysis</topic><topic>Calorimetry, Indirect</topic><topic>Carnitine - blood</topic><topic>Catecholamines - blood</topic><topic>Eating</topic><topic>Exercise</topic><topic>Fatty Acids, Nonesterified - blood</topic><topic>Glucagon - blood</topic><topic>Glycerol - blood</topic><topic>Humans</topic><topic>Insulin - blood</topic><topic>Lactates - blood</topic><topic>Liver Cirrhosis - blood</topic><topic>Liver Cirrhosis - metabolism</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Middle Aged</topic><topic>Other nutritional diseases (malnutrition, nutritional and vitamin deficiencies...)</topic><topic>Oxygen Consumption</topic><topic>Respiratory Transport</topic><topic>Rest</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campillo, Bernard</creatorcontrib><creatorcontrib>Chapelain, Chantal</creatorcontrib><creatorcontrib>Bonnet, Jean Claude</creatorcontrib><creatorcontrib>Frisdal, Eric</creatorcontrib><creatorcontrib>Devanlay, Michel</creatorcontrib><creatorcontrib>Bouissou, Philippe</creatorcontrib><creatorcontrib>Fouet, Paul</creatorcontrib><creatorcontrib>Wirquin, Evelyne</creatorcontrib><creatorcontrib>Atlan, Guy</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolism, clinical and experimental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campillo, Bernard</au><au>Chapelain, Chantal</au><au>Bonnet, Jean Claude</au><au>Frisdal, Eric</au><au>Devanlay, Michel</au><au>Bouissou, Philippe</au><au>Fouet, Paul</au><au>Wirquin, Evelyne</au><au>Atlan, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hormonal and metabolic changes during exercise in cirrhotic patients</atitle><jtitle>Metabolism, clinical and experimental</jtitle><addtitle>Metabolism</addtitle><date>1990</date><risdate>1990</risdate><volume>39</volume><issue>1</issue><spage>18</spage><epage>24</epage><pages>18-24</pages><issn>0026-0495</issn><eissn>1532-8600</eissn><abstract>The metabolic response to exercise was compared in 10 cirrhotic patients (P) in a stable clinical condition and in 6 sedentary, age-matched, normal subjects (C) performing 32 minutes of treadmill exercise with the same constant workload corresponding to three to four times their resting oxygen uptake. Taking indirect calorimetry as reference, respiratory exchanges indicated that cirrhotic patients consumed carbohydrates almost exclusively, unlike the normal controls, who consumed lipids and glucids in about the same proportions (RQ : 0.98 ± 0.04 v 0.87 ± 0.04, P &lt; .0001). In the patients, this carbohydrate path of exercise metabolism lowered glycemia from the resting value of 5.23 ± 0.16 mmol/L to 4.03 ± 0.37 mmol/L ( P &lt; .0001) and raised the plasma lactate concentration from 2.08 ± 0.24 mmol/L at rest to 3.48 ± 0.32 mmol/L at the eighth minute of exercise ( P &lt; .001), thus suggesting defective liver glyconeogenesis. Fatty free acids and glycerol remained almost constant during exercise, whereas catecholamines increased. Insulin levels were high in patients at rest (67.1 ± 14.5 U/mL v 15.1 ± 3.5 U/mL); they declined sharply at the onset of exercise but nevertheless remained high compared to those observed in the controls ( P &lt; .0001). Glucagon increased in exercising patients from 88.3 ± 21.3 pg/mL to 127.4 ± 30.6 pg/mL (NS). Esterified plasma carnitine declined in the patients from 13.0 ± 2.2 μmol/L to 8.6 ± 1.5 μmol/L ( P &lt; .05). Several possibilities might account for these results: (1) insulin and exercise might act synergistically to increase glucose use; (2) insulin might not allow other hormones to express their effects, hence the lipolysis inhibition and reduced liver glycogen release; (3) the decrease in esterified carnitine might be due either to hyperinsulinemia and small lipid use or to some defect of synthesis connected with liver cell damage, a defect that becomes evident when carnitine requirements increase.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>2403618</pmid><doi>10.1016/0026-0495(90)90142-Y</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-0495
ispartof Metabolism, clinical and experimental, 1990, Vol.39 (1), p.18-24
issn 0026-0495
1532-8600
language eng
recordid cdi_proquest_miscellaneous_79537493
source MEDLINE; Elsevier ScienceDirect Journals
subjects Age Factors
Biological and medical sciences
Blood Glucose - analysis
Calorimetry, Indirect
Carnitine - blood
Catecholamines - blood
Eating
Exercise
Fatty Acids, Nonesterified - blood
Glucagon - blood
Glycerol - blood
Humans
Insulin - blood
Lactates - blood
Liver Cirrhosis - blood
Liver Cirrhosis - metabolism
Male
Medical sciences
Metabolic diseases
Middle Aged
Other nutritional diseases (malnutrition, nutritional and vitamin deficiencies...)
Oxygen Consumption
Respiratory Transport
Rest
title Hormonal and metabolic changes during exercise in cirrhotic patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hormonal%20and%20metabolic%20changes%20during%20exercise%20in%20cirrhotic%20patients&rft.jtitle=Metabolism,%20clinical%20and%20experimental&rft.au=Campillo,%20Bernard&rft.date=1990&rft.volume=39&rft.issue=1&rft.spage=18&rft.epage=24&rft.pages=18-24&rft.issn=0026-0495&rft.eissn=1532-8600&rft_id=info:doi/10.1016/0026-0495(90)90142-Y&rft_dat=%3Cproquest_cross%3E79537493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79537493&rft_id=info:pmid/2403618&rft_els_id=002604959090142Y&rfr_iscdi=true