Torsion-Angle Molecular Dynamics as a New Efficient Tool for NMR Structure Calculation

Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances andJ-coupling-constant-derived dihedral angle restraints. Compared to two other commonly used algorithms, molecular dynamics in Cartesian space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 1997-01, Vol.124 (1), p.154-164
Hauptverfasser: Stein, Evan G., Rice, Luke M., Brünger, Axel T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 1
container_start_page 154
container_title Journal of magnetic resonance (1997)
container_volume 124
creator Stein, Evan G.
Rice, Luke M.
Brünger, Axel T.
description Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances andJ-coupling-constant-derived dihedral angle restraints. Compared to two other commonly used algorithms, molecular dynamics in Cartesian space and metric-matrix distance geometry combined with Cartesian molecular dynamics, the method shows increased computational efficiency and success rate for large proteins, and it shows a dramatically increased radius of convergence for DNA. The torsion-angle molecular dynamics algorithm starts from an extended strand conformation and proceeds in four stages: high-temperature torsion-angle molecular dynamics, slow-cooling torsion-angle molecular dynamics, Cartesian molecular dynamics, and minimization. Tests were carried out using experimental NMR data for protein G, interleukin-8, villin 14T, and a 12 base-pair duplex of DNA, and simulated NMR data for bovine pancreatic trypsin inhibitor. For villin 14T, a monomer consisting of 126 residues, structure determination by torsion-angle molecular dynamics has a success rate of 85%, a more than twofold improvement over other methods. In the case of the 12 base-pair DNA duplex, torsion-angle molecular dynamics had a success rate of 52% while Cartesian molecular dynamics and metric-matrix distance geometry always failed.
doi_str_mv 10.1006/jmre.1996.1027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79499460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780796910277</els_id><sourcerecordid>79499460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9d056d67e53f0d7f715e545be77c02a57cb920a771c054021dac65446382f5083</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMoq65evQk5ees6aZukOS7rJ_gBunoN2XQqkbZZk1bxv7d1F2_CwMzw3jyYHyEnDGYMQJy_NwFnTCkxrKncIQcMlEig4GL3d4ZEFiD3yWGM7wCMcQkTMlF5mmfAD8jr0ofofJvM27ca6b2v0fa1CfTiuzWNs5GaoegDftHLqnLWYdvRpfc1rXygD_dP9LkLve36gHRh6vG2G-KOyF5l6ojH2z4lL1eXy8VNcvd4fbuY3yU2k6pLVAlclEIizyooZSUZR57zFUppITVc2pVKwUjJLPAcUlYaK3iei6xIKw5FNiVnm9x18B89xk43Llqsa9Oi76OWKlcqFzAYZxujDT7GgJVeB9eY8K0Z6BGkHkHqEaQeQQ4Hp9vkftVg-Wffkhv0YqPj8N6nw6DjCMdi6QLaTpfe_Rf9A6upgMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79499460</pqid></control><display><type>article</type><title>Torsion-Angle Molecular Dynamics as a New Efficient Tool for NMR Structure Calculation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Stein, Evan G. ; Rice, Luke M. ; Brünger, Axel T.</creator><creatorcontrib>Stein, Evan G. ; Rice, Luke M. ; Brünger, Axel T.</creatorcontrib><description>Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances andJ-coupling-constant-derived dihedral angle restraints. Compared to two other commonly used algorithms, molecular dynamics in Cartesian space and metric-matrix distance geometry combined with Cartesian molecular dynamics, the method shows increased computational efficiency and success rate for large proteins, and it shows a dramatically increased radius of convergence for DNA. The torsion-angle molecular dynamics algorithm starts from an extended strand conformation and proceeds in four stages: high-temperature torsion-angle molecular dynamics, slow-cooling torsion-angle molecular dynamics, Cartesian molecular dynamics, and minimization. Tests were carried out using experimental NMR data for protein G, interleukin-8, villin 14T, and a 12 base-pair duplex of DNA, and simulated NMR data for bovine pancreatic trypsin inhibitor. For villin 14T, a monomer consisting of 126 residues, structure determination by torsion-angle molecular dynamics has a success rate of 85%, a more than twofold improvement over other methods. In the case of the 12 base-pair DNA duplex, torsion-angle molecular dynamics had a success rate of 52% while Cartesian molecular dynamics and metric-matrix distance geometry always failed.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1006/jmre.1996.1027</identifier><identifier>PMID: 9424305</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animals ; Carrier Proteins - chemistry ; Cattle ; DNA - chemistry ; Energy Transfer ; Interleukin-8 - chemistry ; Microfilament Proteins - chemistry ; Nerve Tissue Proteins - chemistry ; Nuclear Magnetic Resonance, Biomolecular - methods ; Nucleic Acid Conformation ; Protein Conformation ; Reproducibility of Results ; Trypsin Inhibitors - chemistry</subject><ispartof>Journal of magnetic resonance (1997), 1997-01, Vol.124 (1), p.154-164</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9d056d67e53f0d7f715e545be77c02a57cb920a771c054021dac65446382f5083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmre.1996.1027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9424305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stein, Evan G.</creatorcontrib><creatorcontrib>Rice, Luke M.</creatorcontrib><creatorcontrib>Brünger, Axel T.</creatorcontrib><title>Torsion-Angle Molecular Dynamics as a New Efficient Tool for NMR Structure Calculation</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances andJ-coupling-constant-derived dihedral angle restraints. Compared to two other commonly used algorithms, molecular dynamics in Cartesian space and metric-matrix distance geometry combined with Cartesian molecular dynamics, the method shows increased computational efficiency and success rate for large proteins, and it shows a dramatically increased radius of convergence for DNA. The torsion-angle molecular dynamics algorithm starts from an extended strand conformation and proceeds in four stages: high-temperature torsion-angle molecular dynamics, slow-cooling torsion-angle molecular dynamics, Cartesian molecular dynamics, and minimization. Tests were carried out using experimental NMR data for protein G, interleukin-8, villin 14T, and a 12 base-pair duplex of DNA, and simulated NMR data for bovine pancreatic trypsin inhibitor. For villin 14T, a monomer consisting of 126 residues, structure determination by torsion-angle molecular dynamics has a success rate of 85%, a more than twofold improvement over other methods. In the case of the 12 base-pair DNA duplex, torsion-angle molecular dynamics had a success rate of 52% while Cartesian molecular dynamics and metric-matrix distance geometry always failed.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Carrier Proteins - chemistry</subject><subject>Cattle</subject><subject>DNA - chemistry</subject><subject>Energy Transfer</subject><subject>Interleukin-8 - chemistry</subject><subject>Microfilament Proteins - chemistry</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Conformation</subject><subject>Reproducibility of Results</subject><subject>Trypsin Inhibitors - chemistry</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LxDAQxYMoq65evQk5ees6aZukOS7rJ_gBunoN2XQqkbZZk1bxv7d1F2_CwMzw3jyYHyEnDGYMQJy_NwFnTCkxrKncIQcMlEig4GL3d4ZEFiD3yWGM7wCMcQkTMlF5mmfAD8jr0ofofJvM27ca6b2v0fa1CfTiuzWNs5GaoegDftHLqnLWYdvRpfc1rXygD_dP9LkLve36gHRh6vG2G-KOyF5l6ojH2z4lL1eXy8VNcvd4fbuY3yU2k6pLVAlclEIizyooZSUZR57zFUppITVc2pVKwUjJLPAcUlYaK3iei6xIKw5FNiVnm9x18B89xk43Llqsa9Oi76OWKlcqFzAYZxujDT7GgJVeB9eY8K0Z6BGkHkHqEaQeQQ4Hp9vkftVg-Wffkhv0YqPj8N6nw6DjCMdi6QLaTpfe_Rf9A6upgMQ</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>Stein, Evan G.</creator><creator>Rice, Luke M.</creator><creator>Brünger, Axel T.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199701</creationdate><title>Torsion-Angle Molecular Dynamics as a New Efficient Tool for NMR Structure Calculation</title><author>Stein, Evan G. ; Rice, Luke M. ; Brünger, Axel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9d056d67e53f0d7f715e545be77c02a57cb920a771c054021dac65446382f5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Carrier Proteins - chemistry</topic><topic>Cattle</topic><topic>DNA - chemistry</topic><topic>Energy Transfer</topic><topic>Interleukin-8 - chemistry</topic><topic>Microfilament Proteins - chemistry</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Conformation</topic><topic>Reproducibility of Results</topic><topic>Trypsin Inhibitors - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, Evan G.</creatorcontrib><creatorcontrib>Rice, Luke M.</creatorcontrib><creatorcontrib>Brünger, Axel T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, Evan G.</au><au>Rice, Luke M.</au><au>Brünger, Axel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Torsion-Angle Molecular Dynamics as a New Efficient Tool for NMR Structure Calculation</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>1997-01</date><risdate>1997</risdate><volume>124</volume><issue>1</issue><spage>154</spage><epage>164</epage><pages>154-164</pages><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances andJ-coupling-constant-derived dihedral angle restraints. Compared to two other commonly used algorithms, molecular dynamics in Cartesian space and metric-matrix distance geometry combined with Cartesian molecular dynamics, the method shows increased computational efficiency and success rate for large proteins, and it shows a dramatically increased radius of convergence for DNA. The torsion-angle molecular dynamics algorithm starts from an extended strand conformation and proceeds in four stages: high-temperature torsion-angle molecular dynamics, slow-cooling torsion-angle molecular dynamics, Cartesian molecular dynamics, and minimization. Tests were carried out using experimental NMR data for protein G, interleukin-8, villin 14T, and a 12 base-pair duplex of DNA, and simulated NMR data for bovine pancreatic trypsin inhibitor. For villin 14T, a monomer consisting of 126 residues, structure determination by torsion-angle molecular dynamics has a success rate of 85%, a more than twofold improvement over other methods. In the case of the 12 base-pair DNA duplex, torsion-angle molecular dynamics had a success rate of 52% while Cartesian molecular dynamics and metric-matrix distance geometry always failed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9424305</pmid><doi>10.1006/jmre.1996.1027</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1090-7807
ispartof Journal of magnetic resonance (1997), 1997-01, Vol.124 (1), p.154-164
issn 1090-7807
1096-0856
language eng
recordid cdi_proquest_miscellaneous_79499460
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Animals
Carrier Proteins - chemistry
Cattle
DNA - chemistry
Energy Transfer
Interleukin-8 - chemistry
Microfilament Proteins - chemistry
Nerve Tissue Proteins - chemistry
Nuclear Magnetic Resonance, Biomolecular - methods
Nucleic Acid Conformation
Protein Conformation
Reproducibility of Results
Trypsin Inhibitors - chemistry
title Torsion-Angle Molecular Dynamics as a New Efficient Tool for NMR Structure Calculation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Torsion-Angle%20Molecular%20Dynamics%20as%20a%20New%20Efficient%20Tool%20for%20NMR%20Structure%20Calculation&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Stein,%20Evan%20G.&rft.date=1997-01&rft.volume=124&rft.issue=1&rft.spage=154&rft.epage=164&rft.pages=154-164&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1006/jmre.1996.1027&rft_dat=%3Cproquest_cross%3E79499460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79499460&rft_id=info:pmid/9424305&rft_els_id=S1090780796910277&rfr_iscdi=true