A Predictive Model for Matrix and Analyte Effects in Electrospray Ionization of Singly-Charged Ionic Analytes
In electrospray ionization (ESI), droplets with a surface excess charge are created. The rate of production of surface excess charge is a constant and is equal to the rate of ion production. The ions appearing in the mass spectrum are postulated to be those that formed the surface excess charge at t...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 1997-12, Vol.69 (23), p.4885-4893 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In electrospray ionization (ESI), droplets with a surface excess charge are created. The rate of production of surface excess charge is a constant and is equal to the rate of ion production. The ions appearing in the mass spectrum are postulated to be those that formed the surface excess charge at the time of droplet formation (or their collision products). An equilibrium model based on competition among the ions in the solution for the limited number of excess charge sites has been developed. This model accurately predicts the response curves of singly-charged ionic analytes as a function of the concentration of electrolyte and other analytes and provides an explanation for the selective effectiveness of ESI. At low concentrations of total analyte (micromolar and less), the response curves are linear, indifferent to the presence of other low concentration analytes, and suppressed by electrolyte concentrations in excess of the minimum required. At higher analyte concentrations, the response becomes independent of analyte concentration but highly affected by the presence of other analytes. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac970095w |