Tissue-specific alternative splicing of ascidian troponin I isoforms. Redesign of a protein isoform-generating mechanism during chordate evolution

In vertebrates, troponin I (TnI) exists as shorter and longer isoforms encoded by distinct genes expressed in skeletal and cardiac muscle, respectively. We report that the protochordate ascidian Ciona intestinalis expresses a homologous set of shorter and longer TnI isoforms in body wall muscle and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1997-12, Vol.272 (51), p.32115-32120
Hauptverfasser: MacLean, D W, Meedel, T H, Hastings, K E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32120
container_issue 51
container_start_page 32115
container_title The Journal of biological chemistry
container_volume 272
creator MacLean, D W
Meedel, T H
Hastings, K E
description In vertebrates, troponin I (TnI) exists as shorter and longer isoforms encoded by distinct genes expressed in skeletal and cardiac muscle, respectively. We report that the protochordate ascidian Ciona intestinalis expresses a homologous set of shorter and longer TnI isoforms in body wall muscle and heart, respectively. The heart-specific segment of the ascidian longer TnI isoform shares several sequence features with vertebrate cardiac TnI but lacks the protein kinase A phosphorylation sites implicated in sympatho-adrenal control of cardiac function. In contrast with vertebrates, the ascidian longer and shorter TnI isoforms are produced from a single gene by tissue-specific alternative RNA splicing; remarkably, the molecular mechanism of TnI isoform generation has been entirely reworked during ascidian/vertebrate evolution. Because alternative splicing is the more probable chordate ancestral condition, the long/cardiac versus short/somatic muscle pattern of TnI isoforms likely existed before the occurrence of the gene duplication events that created the vertebrate TnI gene family. Thus, gene duplication was apparently not the primary engine of isoform diversity in this aspect of TnI gene family evolution; rather, it simply provided an alternative (transcriptional) means of maintaining a previously established system of isoform diversity and tissue specificity based on alternative RNA splicing.
doi_str_mv 10.1074/jbc.272.51.32115
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_79478351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79478351</sourcerecordid><originalsourceid>FETCH-LOGICAL-p237t-992d440a23781de3a37c5f3053be0360436f4085379a9023789f6238b75d61f23</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhj2ASinsLEie2BL8mcQjqvioVAkJlTlynEvrKrGDnVTib_CLCZCdW0733qNHp0PohpKUklzcHyuTspylkqacUSrP0JIQRhPFZHGBLmM8kqmEogu0UIJIQdQSfe1sjCMksQdjG2uwbgcITg_2BDj2rTXW7bFvsI7G1lY7PATfe2cd3mAbfeNDF1P8BjVEu3e_JO6DH2Ai5n2yBwdhUk6mDsxBOxs7XI_hJzAHH2o9AIaTb8fBeneFzhvdRrie-wq9Pz3u1i_J9vV5s37YJj3j-ZAoxWohiJ6GgtbANc-NbDiRvALCMyJ41ghSSJ4rrcgPpZqM8aLKZZ3RhvEVuvvzTud-jBCHsrPRQNtqB36MZa5EXnBJ_wVpxqlitJjA2xkcqw7qsg-20-GznL_NvwEJloHn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16319218</pqid></control><display><type>article</type><title>Tissue-specific alternative splicing of ascidian troponin I isoforms. Redesign of a protein isoform-generating mechanism during chordate evolution</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>MacLean, D W ; Meedel, T H ; Hastings, K E</creator><creatorcontrib>MacLean, D W ; Meedel, T H ; Hastings, K E</creatorcontrib><description>In vertebrates, troponin I (TnI) exists as shorter and longer isoforms encoded by distinct genes expressed in skeletal and cardiac muscle, respectively. We report that the protochordate ascidian Ciona intestinalis expresses a homologous set of shorter and longer TnI isoforms in body wall muscle and heart, respectively. The heart-specific segment of the ascidian longer TnI isoform shares several sequence features with vertebrate cardiac TnI but lacks the protein kinase A phosphorylation sites implicated in sympatho-adrenal control of cardiac function. In contrast with vertebrates, the ascidian longer and shorter TnI isoforms are produced from a single gene by tissue-specific alternative RNA splicing; remarkably, the molecular mechanism of TnI isoform generation has been entirely reworked during ascidian/vertebrate evolution. Because alternative splicing is the more probable chordate ancestral condition, the long/cardiac versus short/somatic muscle pattern of TnI isoforms likely existed before the occurrence of the gene duplication events that created the vertebrate TnI gene family. Thus, gene duplication was apparently not the primary engine of isoform diversity in this aspect of TnI gene family evolution; rather, it simply provided an alternative (transcriptional) means of maintaining a previously established system of isoform diversity and tissue specificity based on alternative RNA splicing.</description><identifier>ISSN: 0021-9258</identifier><identifier>DOI: 10.1074/jbc.272.51.32115</identifier><identifier>PMID: 9405409</identifier><language>eng</language><publisher>United States</publisher><subject>Alternative Splicing ; Amino Acid Sequence ; Animals ; Ascidiacea ; Base Sequence ; Ciona intestinalis ; Ciona intestinalis - genetics ; DNA, Complementary ; Evolution, Molecular ; Exons ; Introns ; Marine ; Molecular Sequence Data ; Muscle, Skeletal - metabolism ; Myocardium - metabolism ; RNA, Messenger - genetics ; Sequence Homology, Amino Acid ; Troponin I - genetics ; Vertebrates</subject><ispartof>The Journal of biological chemistry, 1997-12, Vol.272 (51), p.32115-32120</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9405409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacLean, D W</creatorcontrib><creatorcontrib>Meedel, T H</creatorcontrib><creatorcontrib>Hastings, K E</creatorcontrib><title>Tissue-specific alternative splicing of ascidian troponin I isoforms. Redesign of a protein isoform-generating mechanism during chordate evolution</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In vertebrates, troponin I (TnI) exists as shorter and longer isoforms encoded by distinct genes expressed in skeletal and cardiac muscle, respectively. We report that the protochordate ascidian Ciona intestinalis expresses a homologous set of shorter and longer TnI isoforms in body wall muscle and heart, respectively. The heart-specific segment of the ascidian longer TnI isoform shares several sequence features with vertebrate cardiac TnI but lacks the protein kinase A phosphorylation sites implicated in sympatho-adrenal control of cardiac function. In contrast with vertebrates, the ascidian longer and shorter TnI isoforms are produced from a single gene by tissue-specific alternative RNA splicing; remarkably, the molecular mechanism of TnI isoform generation has been entirely reworked during ascidian/vertebrate evolution. Because alternative splicing is the more probable chordate ancestral condition, the long/cardiac versus short/somatic muscle pattern of TnI isoforms likely existed before the occurrence of the gene duplication events that created the vertebrate TnI gene family. Thus, gene duplication was apparently not the primary engine of isoform diversity in this aspect of TnI gene family evolution; rather, it simply provided an alternative (transcriptional) means of maintaining a previously established system of isoform diversity and tissue specificity based on alternative RNA splicing.</description><subject>Alternative Splicing</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Ascidiacea</subject><subject>Base Sequence</subject><subject>Ciona intestinalis</subject><subject>Ciona intestinalis - genetics</subject><subject>DNA, Complementary</subject><subject>Evolution, Molecular</subject><subject>Exons</subject><subject>Introns</subject><subject>Marine</subject><subject>Molecular Sequence Data</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Myocardium - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>Sequence Homology, Amino Acid</subject><subject>Troponin I - genetics</subject><subject>Vertebrates</subject><issn>0021-9258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhj2ASinsLEie2BL8mcQjqvioVAkJlTlynEvrKrGDnVTib_CLCZCdW0733qNHp0PohpKUklzcHyuTspylkqacUSrP0JIQRhPFZHGBLmM8kqmEogu0UIJIQdQSfe1sjCMksQdjG2uwbgcITg_2BDj2rTXW7bFvsI7G1lY7PATfe2cd3mAbfeNDF1P8BjVEu3e_JO6DH2Ai5n2yBwdhUk6mDsxBOxs7XI_hJzAHH2o9AIaTb8fBeneFzhvdRrie-wq9Pz3u1i_J9vV5s37YJj3j-ZAoxWohiJ6GgtbANc-NbDiRvALCMyJ41ghSSJ4rrcgPpZqM8aLKZZ3RhvEVuvvzTud-jBCHsrPRQNtqB36MZa5EXnBJ_wVpxqlitJjA2xkcqw7qsg-20-GznL_NvwEJloHn</recordid><startdate>19971219</startdate><enddate>19971219</enddate><creator>MacLean, D W</creator><creator>Meedel, T H</creator><creator>Hastings, K E</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TM</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19971219</creationdate><title>Tissue-specific alternative splicing of ascidian troponin I isoforms. Redesign of a protein isoform-generating mechanism during chordate evolution</title><author>MacLean, D W ; Meedel, T H ; Hastings, K E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p237t-992d440a23781de3a37c5f3053be0360436f4085379a9023789f6238b75d61f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Alternative Splicing</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Ascidiacea</topic><topic>Base Sequence</topic><topic>Ciona intestinalis</topic><topic>Ciona intestinalis - genetics</topic><topic>DNA, Complementary</topic><topic>Evolution, Molecular</topic><topic>Exons</topic><topic>Introns</topic><topic>Marine</topic><topic>Molecular Sequence Data</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Myocardium - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>Sequence Homology, Amino Acid</topic><topic>Troponin I - genetics</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacLean, D W</creatorcontrib><creatorcontrib>Meedel, T H</creatorcontrib><creatorcontrib>Hastings, K E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacLean, D W</au><au>Meedel, T H</au><au>Hastings, K E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue-specific alternative splicing of ascidian troponin I isoforms. Redesign of a protein isoform-generating mechanism during chordate evolution</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1997-12-19</date><risdate>1997</risdate><volume>272</volume><issue>51</issue><spage>32115</spage><epage>32120</epage><pages>32115-32120</pages><issn>0021-9258</issn><abstract>In vertebrates, troponin I (TnI) exists as shorter and longer isoforms encoded by distinct genes expressed in skeletal and cardiac muscle, respectively. We report that the protochordate ascidian Ciona intestinalis expresses a homologous set of shorter and longer TnI isoforms in body wall muscle and heart, respectively. The heart-specific segment of the ascidian longer TnI isoform shares several sequence features with vertebrate cardiac TnI but lacks the protein kinase A phosphorylation sites implicated in sympatho-adrenal control of cardiac function. In contrast with vertebrates, the ascidian longer and shorter TnI isoforms are produced from a single gene by tissue-specific alternative RNA splicing; remarkably, the molecular mechanism of TnI isoform generation has been entirely reworked during ascidian/vertebrate evolution. Because alternative splicing is the more probable chordate ancestral condition, the long/cardiac versus short/somatic muscle pattern of TnI isoforms likely existed before the occurrence of the gene duplication events that created the vertebrate TnI gene family. Thus, gene duplication was apparently not the primary engine of isoform diversity in this aspect of TnI gene family evolution; rather, it simply provided an alternative (transcriptional) means of maintaining a previously established system of isoform diversity and tissue specificity based on alternative RNA splicing.</abstract><cop>United States</cop><pmid>9405409</pmid><doi>10.1074/jbc.272.51.32115</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1997-12, Vol.272 (51), p.32115-32120
issn 0021-9258
language eng
recordid cdi_proquest_miscellaneous_79478351
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Alternative Splicing
Amino Acid Sequence
Animals
Ascidiacea
Base Sequence
Ciona intestinalis
Ciona intestinalis - genetics
DNA, Complementary
Evolution, Molecular
Exons
Introns
Marine
Molecular Sequence Data
Muscle, Skeletal - metabolism
Myocardium - metabolism
RNA, Messenger - genetics
Sequence Homology, Amino Acid
Troponin I - genetics
Vertebrates
title Tissue-specific alternative splicing of ascidian troponin I isoforms. Redesign of a protein isoform-generating mechanism during chordate evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue-specific%20alternative%20splicing%20of%20ascidian%20troponin%20I%20isoforms.%20Redesign%20of%20a%20protein%20isoform-generating%20mechanism%20during%20chordate%20evolution&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=MacLean,%20D%20W&rft.date=1997-12-19&rft.volume=272&rft.issue=51&rft.spage=32115&rft.epage=32120&rft.pages=32115-32120&rft.issn=0021-9258&rft_id=info:doi/10.1074/jbc.272.51.32115&rft_dat=%3Cproquest_pubme%3E79478351%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16319218&rft_id=info:pmid/9405409&rfr_iscdi=true