Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions

Sharks are living fossils that are indistinguishable morphologically from their Devonian ancestors of ≈ 400 million years ago. If parallel conservatism characterizes their biochemical evolution, characterization of their immunoglobulin chains could provide information regarding the primordial featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1989-12, Vol.86 (24), p.9961-9965
Hauptverfasser: Schluter, Samuel F., Hohman, Valerie S., Edmundson, Allen B., Marchalonis, John J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9965
container_issue 24
container_start_page 9961
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 86
creator Schluter, Samuel F.
Hohman, Valerie S.
Edmundson, Allen B.
Marchalonis, John J.
description Sharks are living fossils that are indistinguishable morphologically from their Devonian ancestors of ≈ 400 million years ago. If parallel conservatism characterizes their biochemical evolution, characterization of their immunoglobulin chains could provide information regarding the primordial features of these essential defense molecules. Shark immunoglobulins are polydisperse like those of mammals, but these species lack homogeneous myeloma proteins. This heterogeneity has precluded direct determination of the sequence of elasmobranch light-chain proteins. We have sequenced four cDNA clones that contain the constant-region sequence as well as varying degrees of variable- or joining-region segments. The sandbar shark (Carcharhinus plumbeus) has at least four distinct light-chain constant regions, and these can be considered homologs of mammalian λ chains. Approximately 40% identity was found in comparison from sharks to mammals. Certain stretches of sequence were remarkably conserved, whereas others varied in a manner consistent with accepted concepts of speciation. One hexapeptide (Ala-Thr-Leu-Val-Cys-Leu) occurred in λ constant regions of all vertebrate species. There was a universal conservation of certain cysteines, phenylalanines, tryptophans, and glycines and strong identities in the block of residues from Ser-176 to Trp-186. Comparison of the shark sequence with that of the characterized human λ myeloma protein Mcg indicates a strong conservation of three-dimensional structure in this light-chain domain representing species whose ancestors diverged early in vertebrate evolution. The shark light-chain sequence contains primordial features shared by mammalian κ and λ chains and by T-cell receptor β chains.
doi_str_mv 10.1073/pnas.86.24.9961
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79398254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>34776</jstor_id><sourcerecordid>34776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-d7adb1eff803533e94f38345eb8a3af475f07974e1e346d9299fc16cc67d8603</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhUcIVEJhjYQE8gLBKqlf4wcSi2ooUCkCiXRvOR574uKxU3umav99J0oIsIHVXZzvnHuvTlW9RHCBICdn26jLQrAFpgspGXpUzRCUaM6ohI-rGYSYzwXF9Gn1rJRrCKGsBTypTnCNSM35rFIXtymMg08RJAcu-36MqQtpPQYfwdJ3mwE0G-1j-QDMp2_noAkp2gJWW2u8u_exAysd27XOYLXR-SdoUiyDjgP4YbsptDyvnjgdin1xmKfV1eeLq-brfPn9y2VzvpybGqNh3nLdrpF1TkBSE2IldUQQWtu10EQ7ymsHueTUIksoayWW0hnEjGG8FQyS0-rjPnY7rnvbGhuHrIPaZt_rfK-S9upvJfqN6tKtwlIwjCf_u4M_p5vRlkH1vhgbgo42jUVxSaTANf0viGpKIRFyAs_2oMmplGzd8RgE1a46tatOCaYwVbvqJsfrP3848oeuJv3tQdfF6OCyjsaXI8a4kFTsLnx_wHb5v9Tfe5QbQxjs3TCRb_5JTsCrPXBdhpSPBKGcM_IAllrEIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15440389</pqid></control><display><type>article</type><title>Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Schluter, Samuel F. ; Hohman, Valerie S. ; Edmundson, Allen B. ; Marchalonis, John J.</creator><creatorcontrib>Schluter, Samuel F. ; Hohman, Valerie S. ; Edmundson, Allen B. ; Marchalonis, John J.</creatorcontrib><description>Sharks are living fossils that are indistinguishable morphologically from their Devonian ancestors of ≈ 400 million years ago. If parallel conservatism characterizes their biochemical evolution, characterization of their immunoglobulin chains could provide information regarding the primordial features of these essential defense molecules. Shark immunoglobulins are polydisperse like those of mammals, but these species lack homogeneous myeloma proteins. This heterogeneity has precluded direct determination of the sequence of elasmobranch light-chain proteins. We have sequenced four cDNA clones that contain the constant-region sequence as well as varying degrees of variable- or joining-region segments. The sandbar shark (Carcharhinus plumbeus) has at least four distinct light-chain constant regions, and these can be considered homologs of mammalian λ chains. Approximately 40% identity was found in comparison from sharks to mammals. Certain stretches of sequence were remarkably conserved, whereas others varied in a manner consistent with accepted concepts of speciation. One hexapeptide (Ala-Thr-Leu-Val-Cys-Leu) occurred in λ constant regions of all vertebrate species. There was a universal conservation of certain cysteines, phenylalanines, tryptophans, and glycines and strong identities in the block of residues from Ser-176 to Trp-186. Comparison of the shark sequence with that of the characterized human λ myeloma protein Mcg indicates a strong conservation of three-dimensional structure in this light-chain domain representing species whose ancestors diverged early in vertebrate evolution. The shark light-chain sequence contains primordial features shared by mammalian κ and λ chains and by T-cell receptor β chains.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.86.24.9961</identifier><identifier>PMID: 2513577</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Base Sequence ; biochemical analysis ; Biological and medical sciences ; Biological Evolution ; Carcharhinus plumbeus ; Chickens ; Cloning, Molecular ; Complementary DNA ; Cross Reactions ; DNA ; DNA - genetics ; Evolution ; Fossils ; Fundamental and applied biological sciences. Psychology ; Gene Library ; Genes, Immunoglobulin ; Genetics of eukaryotes. Biological and molecular evolution ; Humans ; Immune Sera ; Immunoglobulin Constant Regions - genetics ; Immunoglobulin light chains ; Immunoglobulin Light Chains - genetics ; Immunoglobulins ; Marine ; Mice ; Models, Structural ; Molecular Sequence Data ; Protein Conformation ; Receptors, Antigen, B-Cell - genetics ; Sandbars ; Sequence Homology, Nucleic Acid ; Sharks ; Sharks - genetics ; Sharks - immunology ; Space life sciences ; T cell antigen receptors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1989-12, Vol.86 (24), p.9961-9965</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-d7adb1eff803533e94f38345eb8a3af475f07974e1e346d9299fc16cc67d8603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/86/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/34776$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/34776$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6789484$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2513577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schluter, Samuel F.</creatorcontrib><creatorcontrib>Hohman, Valerie S.</creatorcontrib><creatorcontrib>Edmundson, Allen B.</creatorcontrib><creatorcontrib>Marchalonis, John J.</creatorcontrib><title>Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sharks are living fossils that are indistinguishable morphologically from their Devonian ancestors of ≈ 400 million years ago. If parallel conservatism characterizes their biochemical evolution, characterization of their immunoglobulin chains could provide information regarding the primordial features of these essential defense molecules. Shark immunoglobulins are polydisperse like those of mammals, but these species lack homogeneous myeloma proteins. This heterogeneity has precluded direct determination of the sequence of elasmobranch light-chain proteins. We have sequenced four cDNA clones that contain the constant-region sequence as well as varying degrees of variable- or joining-region segments. The sandbar shark (Carcharhinus plumbeus) has at least four distinct light-chain constant regions, and these can be considered homologs of mammalian λ chains. Approximately 40% identity was found in comparison from sharks to mammals. Certain stretches of sequence were remarkably conserved, whereas others varied in a manner consistent with accepted concepts of speciation. One hexapeptide (Ala-Thr-Leu-Val-Cys-Leu) occurred in λ constant regions of all vertebrate species. There was a universal conservation of certain cysteines, phenylalanines, tryptophans, and glycines and strong identities in the block of residues from Ser-176 to Trp-186. Comparison of the shark sequence with that of the characterized human λ myeloma protein Mcg indicates a strong conservation of three-dimensional structure in this light-chain domain representing species whose ancestors diverged early in vertebrate evolution. The shark light-chain sequence contains primordial features shared by mammalian κ and λ chains and by T-cell receptor β chains.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>biochemical analysis</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Carcharhinus plumbeus</subject><subject>Chickens</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>Cross Reactions</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>Evolution</subject><subject>Fossils</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Library</subject><subject>Genes, Immunoglobulin</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Humans</subject><subject>Immune Sera</subject><subject>Immunoglobulin Constant Regions - genetics</subject><subject>Immunoglobulin light chains</subject><subject>Immunoglobulin Light Chains - genetics</subject><subject>Immunoglobulins</subject><subject>Marine</subject><subject>Mice</subject><subject>Models, Structural</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Receptors, Antigen, B-Cell - genetics</subject><subject>Sandbars</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Sharks</subject><subject>Sharks - genetics</subject><subject>Sharks - immunology</subject><subject>Space life sciences</subject><subject>T cell antigen receptors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhUcIVEJhjYQE8gLBKqlf4wcSi2ooUCkCiXRvOR574uKxU3umav99J0oIsIHVXZzvnHuvTlW9RHCBICdn26jLQrAFpgspGXpUzRCUaM6ohI-rGYSYzwXF9Gn1rJRrCKGsBTypTnCNSM35rFIXtymMg08RJAcu-36MqQtpPQYfwdJ3mwE0G-1j-QDMp2_noAkp2gJWW2u8u_exAysd27XOYLXR-SdoUiyDjgP4YbsptDyvnjgdin1xmKfV1eeLq-brfPn9y2VzvpybGqNh3nLdrpF1TkBSE2IldUQQWtu10EQ7ymsHueTUIksoayWW0hnEjGG8FQyS0-rjPnY7rnvbGhuHrIPaZt_rfK-S9upvJfqN6tKtwlIwjCf_u4M_p5vRlkH1vhgbgo42jUVxSaTANf0viGpKIRFyAs_2oMmplGzd8RgE1a46tatOCaYwVbvqJsfrP3848oeuJv3tQdfF6OCyjsaXI8a4kFTsLnx_wHb5v9Tfe5QbQxjs3TCRb_5JTsCrPXBdhpSPBKGcM_IAllrEIQ</recordid><startdate>19891201</startdate><enddate>19891201</enddate><creator>Schluter, Samuel F.</creator><creator>Hohman, Valerie S.</creator><creator>Edmundson, Allen B.</creator><creator>Marchalonis, John J.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M81</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19891201</creationdate><title>Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions</title><author>Schluter, Samuel F. ; Hohman, Valerie S. ; Edmundson, Allen B. ; Marchalonis, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-d7adb1eff803533e94f38345eb8a3af475f07974e1e346d9299fc16cc67d8603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>biochemical analysis</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Carcharhinus plumbeus</topic><topic>Chickens</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>Cross Reactions</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>Evolution</topic><topic>Fossils</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Library</topic><topic>Genes, Immunoglobulin</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Humans</topic><topic>Immune Sera</topic><topic>Immunoglobulin Constant Regions - genetics</topic><topic>Immunoglobulin light chains</topic><topic>Immunoglobulin Light Chains - genetics</topic><topic>Immunoglobulins</topic><topic>Marine</topic><topic>Mice</topic><topic>Models, Structural</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Receptors, Antigen, B-Cell - genetics</topic><topic>Sandbars</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Sharks</topic><topic>Sharks - genetics</topic><topic>Sharks - immunology</topic><topic>Space life sciences</topic><topic>T cell antigen receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schluter, Samuel F.</creatorcontrib><creatorcontrib>Hohman, Valerie S.</creatorcontrib><creatorcontrib>Edmundson, Allen B.</creatorcontrib><creatorcontrib>Marchalonis, John J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schluter, Samuel F.</au><au>Hohman, Valerie S.</au><au>Edmundson, Allen B.</au><au>Marchalonis, John J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1989-12-01</date><risdate>1989</risdate><volume>86</volume><issue>24</issue><spage>9961</spage><epage>9965</epage><pages>9961-9965</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Sharks are living fossils that are indistinguishable morphologically from their Devonian ancestors of ≈ 400 million years ago. If parallel conservatism characterizes their biochemical evolution, characterization of their immunoglobulin chains could provide information regarding the primordial features of these essential defense molecules. Shark immunoglobulins are polydisperse like those of mammals, but these species lack homogeneous myeloma proteins. This heterogeneity has precluded direct determination of the sequence of elasmobranch light-chain proteins. We have sequenced four cDNA clones that contain the constant-region sequence as well as varying degrees of variable- or joining-region segments. The sandbar shark (Carcharhinus plumbeus) has at least four distinct light-chain constant regions, and these can be considered homologs of mammalian λ chains. Approximately 40% identity was found in comparison from sharks to mammals. Certain stretches of sequence were remarkably conserved, whereas others varied in a manner consistent with accepted concepts of speciation. One hexapeptide (Ala-Thr-Leu-Val-Cys-Leu) occurred in λ constant regions of all vertebrate species. There was a universal conservation of certain cysteines, phenylalanines, tryptophans, and glycines and strong identities in the block of residues from Ser-176 to Trp-186. Comparison of the shark sequence with that of the characterized human λ myeloma protein Mcg indicates a strong conservation of three-dimensional structure in this light-chain domain representing species whose ancestors diverged early in vertebrate evolution. The shark light-chain sequence contains primordial features shared by mammalian κ and λ chains and by T-cell receptor β chains.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2513577</pmid><doi>10.1073/pnas.86.24.9961</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1989-12, Vol.86 (24), p.9961-9965
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_79398254
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Amino acids
Animals
Base Sequence
biochemical analysis
Biological and medical sciences
Biological Evolution
Carcharhinus plumbeus
Chickens
Cloning, Molecular
Complementary DNA
Cross Reactions
DNA
DNA - genetics
Evolution
Fossils
Fundamental and applied biological sciences. Psychology
Gene Library
Genes, Immunoglobulin
Genetics of eukaryotes. Biological and molecular evolution
Humans
Immune Sera
Immunoglobulin Constant Regions - genetics
Immunoglobulin light chains
Immunoglobulin Light Chains - genetics
Immunoglobulins
Marine
Mice
Models, Structural
Molecular Sequence Data
Protein Conformation
Receptors, Antigen, B-Cell - genetics
Sandbars
Sequence Homology, Nucleic Acid
Sharks
Sharks - genetics
Sharks - immunology
Space life sciences
T cell antigen receptors
title Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Immunoglobulin%20Light%20Chains:%20cDNA%20Clones%20Specifying%20Sandbar%20Shark%20Constant%20Regions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schluter,%20Samuel%20F.&rft.date=1989-12-01&rft.volume=86&rft.issue=24&rft.spage=9961&rft.epage=9965&rft.pages=9961-9965&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.86.24.9961&rft_dat=%3Cjstor_proqu%3E34776%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15440389&rft_id=info:pmid/2513577&rft_jstor_id=34776&rfr_iscdi=true