Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions
Sharks are living fossils that are indistinguishable morphologically from their Devonian ancestors of ≈ 400 million years ago. If parallel conservatism characterizes their biochemical evolution, characterization of their immunoglobulin chains could provide information regarding the primordial featur...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1989-12, Vol.86 (24), p.9961-9965 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9965 |
---|---|
container_issue | 24 |
container_start_page | 9961 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 86 |
creator | Schluter, Samuel F. Hohman, Valerie S. Edmundson, Allen B. Marchalonis, John J. |
description | Sharks are living fossils that are indistinguishable morphologically from their Devonian ancestors of ≈ 400 million years ago. If parallel conservatism characterizes their biochemical evolution, characterization of their immunoglobulin chains could provide information regarding the primordial features of these essential defense molecules. Shark immunoglobulins are polydisperse like those of mammals, but these species lack homogeneous myeloma proteins. This heterogeneity has precluded direct determination of the sequence of elasmobranch light-chain proteins. We have sequenced four cDNA clones that contain the constant-region sequence as well as varying degrees of variable- or joining-region segments. The sandbar shark (Carcharhinus plumbeus) has at least four distinct light-chain constant regions, and these can be considered homologs of mammalian λ chains. Approximately 40% identity was found in comparison from sharks to mammals. Certain stretches of sequence were remarkably conserved, whereas others varied in a manner consistent with accepted concepts of speciation. One hexapeptide (Ala-Thr-Leu-Val-Cys-Leu) occurred in λ constant regions of all vertebrate species. There was a universal conservation of certain cysteines, phenylalanines, tryptophans, and glycines and strong identities in the block of residues from Ser-176 to Trp-186. Comparison of the shark sequence with that of the characterized human λ myeloma protein Mcg indicates a strong conservation of three-dimensional structure in this light-chain domain representing species whose ancestors diverged early in vertebrate evolution. The shark light-chain sequence contains primordial features shared by mammalian κ and λ chains and by T-cell receptor β chains. |
doi_str_mv | 10.1073/pnas.86.24.9961 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79398254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>34776</jstor_id><sourcerecordid>34776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-d7adb1eff803533e94f38345eb8a3af475f07974e1e346d9299fc16cc67d8603</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhUcIVEJhjYQE8gLBKqlf4wcSi2ooUCkCiXRvOR574uKxU3umav99J0oIsIHVXZzvnHuvTlW9RHCBICdn26jLQrAFpgspGXpUzRCUaM6ohI-rGYSYzwXF9Gn1rJRrCKGsBTypTnCNSM35rFIXtymMg08RJAcu-36MqQtpPQYfwdJ3mwE0G-1j-QDMp2_noAkp2gJWW2u8u_exAysd27XOYLXR-SdoUiyDjgP4YbsptDyvnjgdin1xmKfV1eeLq-brfPn9y2VzvpybGqNh3nLdrpF1TkBSE2IldUQQWtu10EQ7ymsHueTUIksoayWW0hnEjGG8FQyS0-rjPnY7rnvbGhuHrIPaZt_rfK-S9upvJfqN6tKtwlIwjCf_u4M_p5vRlkH1vhgbgo42jUVxSaTANf0viGpKIRFyAs_2oMmplGzd8RgE1a46tatOCaYwVbvqJsfrP3848oeuJv3tQdfF6OCyjsaXI8a4kFTsLnx_wHb5v9Tfe5QbQxjs3TCRb_5JTsCrPXBdhpSPBKGcM_IAllrEIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15440389</pqid></control><display><type>article</type><title>Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Schluter, Samuel F. ; Hohman, Valerie S. ; Edmundson, Allen B. ; Marchalonis, John J.</creator><creatorcontrib>Schluter, Samuel F. ; Hohman, Valerie S. ; Edmundson, Allen B. ; Marchalonis, John J.</creatorcontrib><description>Sharks are living fossils that are indistinguishable morphologically from their Devonian ancestors of ≈ 400 million years ago. If parallel conservatism characterizes their biochemical evolution, characterization of their immunoglobulin chains could provide information regarding the primordial features of these essential defense molecules. Shark immunoglobulins are polydisperse like those of mammals, but these species lack homogeneous myeloma proteins. This heterogeneity has precluded direct determination of the sequence of elasmobranch light-chain proteins. We have sequenced four cDNA clones that contain the constant-region sequence as well as varying degrees of variable- or joining-region segments. The sandbar shark (Carcharhinus plumbeus) has at least four distinct light-chain constant regions, and these can be considered homologs of mammalian λ chains. Approximately 40% identity was found in comparison from sharks to mammals. Certain stretches of sequence were remarkably conserved, whereas others varied in a manner consistent with accepted concepts of speciation. One hexapeptide (Ala-Thr-Leu-Val-Cys-Leu) occurred in λ constant regions of all vertebrate species. There was a universal conservation of certain cysteines, phenylalanines, tryptophans, and glycines and strong identities in the block of residues from Ser-176 to Trp-186. Comparison of the shark sequence with that of the characterized human λ myeloma protein Mcg indicates a strong conservation of three-dimensional structure in this light-chain domain representing species whose ancestors diverged early in vertebrate evolution. The shark light-chain sequence contains primordial features shared by mammalian κ and λ chains and by T-cell receptor β chains.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.86.24.9961</identifier><identifier>PMID: 2513577</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Base Sequence ; biochemical analysis ; Biological and medical sciences ; Biological Evolution ; Carcharhinus plumbeus ; Chickens ; Cloning, Molecular ; Complementary DNA ; Cross Reactions ; DNA ; DNA - genetics ; Evolution ; Fossils ; Fundamental and applied biological sciences. Psychology ; Gene Library ; Genes, Immunoglobulin ; Genetics of eukaryotes. Biological and molecular evolution ; Humans ; Immune Sera ; Immunoglobulin Constant Regions - genetics ; Immunoglobulin light chains ; Immunoglobulin Light Chains - genetics ; Immunoglobulins ; Marine ; Mice ; Models, Structural ; Molecular Sequence Data ; Protein Conformation ; Receptors, Antigen, B-Cell - genetics ; Sandbars ; Sequence Homology, Nucleic Acid ; Sharks ; Sharks - genetics ; Sharks - immunology ; Space life sciences ; T cell antigen receptors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1989-12, Vol.86 (24), p.9961-9965</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-d7adb1eff803533e94f38345eb8a3af475f07974e1e346d9299fc16cc67d8603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/86/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/34776$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/34776$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6789484$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2513577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schluter, Samuel F.</creatorcontrib><creatorcontrib>Hohman, Valerie S.</creatorcontrib><creatorcontrib>Edmundson, Allen B.</creatorcontrib><creatorcontrib>Marchalonis, John J.</creatorcontrib><title>Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sharks are living fossils that are indistinguishable morphologically from their Devonian ancestors of ≈ 400 million years ago. If parallel conservatism characterizes their biochemical evolution, characterization of their immunoglobulin chains could provide information regarding the primordial features of these essential defense molecules. Shark immunoglobulins are polydisperse like those of mammals, but these species lack homogeneous myeloma proteins. This heterogeneity has precluded direct determination of the sequence of elasmobranch light-chain proteins. We have sequenced four cDNA clones that contain the constant-region sequence as well as varying degrees of variable- or joining-region segments. The sandbar shark (Carcharhinus plumbeus) has at least four distinct light-chain constant regions, and these can be considered homologs of mammalian λ chains. Approximately 40% identity was found in comparison from sharks to mammals. Certain stretches of sequence were remarkably conserved, whereas others varied in a manner consistent with accepted concepts of speciation. One hexapeptide (Ala-Thr-Leu-Val-Cys-Leu) occurred in λ constant regions of all vertebrate species. There was a universal conservation of certain cysteines, phenylalanines, tryptophans, and glycines and strong identities in the block of residues from Ser-176 to Trp-186. Comparison of the shark sequence with that of the characterized human λ myeloma protein Mcg indicates a strong conservation of three-dimensional structure in this light-chain domain representing species whose ancestors diverged early in vertebrate evolution. The shark light-chain sequence contains primordial features shared by mammalian κ and λ chains and by T-cell receptor β chains.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>biochemical analysis</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Carcharhinus plumbeus</subject><subject>Chickens</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>Cross Reactions</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>Evolution</subject><subject>Fossils</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Library</subject><subject>Genes, Immunoglobulin</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Humans</subject><subject>Immune Sera</subject><subject>Immunoglobulin Constant Regions - genetics</subject><subject>Immunoglobulin light chains</subject><subject>Immunoglobulin Light Chains - genetics</subject><subject>Immunoglobulins</subject><subject>Marine</subject><subject>Mice</subject><subject>Models, Structural</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Receptors, Antigen, B-Cell - genetics</subject><subject>Sandbars</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Sharks</subject><subject>Sharks - genetics</subject><subject>Sharks - immunology</subject><subject>Space life sciences</subject><subject>T cell antigen receptors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhUcIVEJhjYQE8gLBKqlf4wcSi2ooUCkCiXRvOR574uKxU3umav99J0oIsIHVXZzvnHuvTlW9RHCBICdn26jLQrAFpgspGXpUzRCUaM6ohI-rGYSYzwXF9Gn1rJRrCKGsBTypTnCNSM35rFIXtymMg08RJAcu-36MqQtpPQYfwdJ3mwE0G-1j-QDMp2_noAkp2gJWW2u8u_exAysd27XOYLXR-SdoUiyDjgP4YbsptDyvnjgdin1xmKfV1eeLq-brfPn9y2VzvpybGqNh3nLdrpF1TkBSE2IldUQQWtu10EQ7ymsHueTUIksoayWW0hnEjGG8FQyS0-rjPnY7rnvbGhuHrIPaZt_rfK-S9upvJfqN6tKtwlIwjCf_u4M_p5vRlkH1vhgbgo42jUVxSaTANf0viGpKIRFyAs_2oMmplGzd8RgE1a46tatOCaYwVbvqJsfrP3848oeuJv3tQdfF6OCyjsaXI8a4kFTsLnx_wHb5v9Tfe5QbQxjs3TCRb_5JTsCrPXBdhpSPBKGcM_IAllrEIQ</recordid><startdate>19891201</startdate><enddate>19891201</enddate><creator>Schluter, Samuel F.</creator><creator>Hohman, Valerie S.</creator><creator>Edmundson, Allen B.</creator><creator>Marchalonis, John J.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M81</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19891201</creationdate><title>Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions</title><author>Schluter, Samuel F. ; Hohman, Valerie S. ; Edmundson, Allen B. ; Marchalonis, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-d7adb1eff803533e94f38345eb8a3af475f07974e1e346d9299fc16cc67d8603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>biochemical analysis</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Carcharhinus plumbeus</topic><topic>Chickens</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>Cross Reactions</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>Evolution</topic><topic>Fossils</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Library</topic><topic>Genes, Immunoglobulin</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Humans</topic><topic>Immune Sera</topic><topic>Immunoglobulin Constant Regions - genetics</topic><topic>Immunoglobulin light chains</topic><topic>Immunoglobulin Light Chains - genetics</topic><topic>Immunoglobulins</topic><topic>Marine</topic><topic>Mice</topic><topic>Models, Structural</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Receptors, Antigen, B-Cell - genetics</topic><topic>Sandbars</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Sharks</topic><topic>Sharks - genetics</topic><topic>Sharks - immunology</topic><topic>Space life sciences</topic><topic>T cell antigen receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schluter, Samuel F.</creatorcontrib><creatorcontrib>Hohman, Valerie S.</creatorcontrib><creatorcontrib>Edmundson, Allen B.</creatorcontrib><creatorcontrib>Marchalonis, John J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schluter, Samuel F.</au><au>Hohman, Valerie S.</au><au>Edmundson, Allen B.</au><au>Marchalonis, John J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1989-12-01</date><risdate>1989</risdate><volume>86</volume><issue>24</issue><spage>9961</spage><epage>9965</epage><pages>9961-9965</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Sharks are living fossils that are indistinguishable morphologically from their Devonian ancestors of ≈ 400 million years ago. If parallel conservatism characterizes their biochemical evolution, characterization of their immunoglobulin chains could provide information regarding the primordial features of these essential defense molecules. Shark immunoglobulins are polydisperse like those of mammals, but these species lack homogeneous myeloma proteins. This heterogeneity has precluded direct determination of the sequence of elasmobranch light-chain proteins. We have sequenced four cDNA clones that contain the constant-region sequence as well as varying degrees of variable- or joining-region segments. The sandbar shark (Carcharhinus plumbeus) has at least four distinct light-chain constant regions, and these can be considered homologs of mammalian λ chains. Approximately 40% identity was found in comparison from sharks to mammals. Certain stretches of sequence were remarkably conserved, whereas others varied in a manner consistent with accepted concepts of speciation. One hexapeptide (Ala-Thr-Leu-Val-Cys-Leu) occurred in λ constant regions of all vertebrate species. There was a universal conservation of certain cysteines, phenylalanines, tryptophans, and glycines and strong identities in the block of residues from Ser-176 to Trp-186. Comparison of the shark sequence with that of the characterized human λ myeloma protein Mcg indicates a strong conservation of three-dimensional structure in this light-chain domain representing species whose ancestors diverged early in vertebrate evolution. The shark light-chain sequence contains primordial features shared by mammalian κ and λ chains and by T-cell receptor β chains.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2513577</pmid><doi>10.1073/pnas.86.24.9961</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1989-12, Vol.86 (24), p.9961-9965 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_79398254 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino acids Animals Base Sequence biochemical analysis Biological and medical sciences Biological Evolution Carcharhinus plumbeus Chickens Cloning, Molecular Complementary DNA Cross Reactions DNA DNA - genetics Evolution Fossils Fundamental and applied biological sciences. Psychology Gene Library Genes, Immunoglobulin Genetics of eukaryotes. Biological and molecular evolution Humans Immune Sera Immunoglobulin Constant Regions - genetics Immunoglobulin light chains Immunoglobulin Light Chains - genetics Immunoglobulins Marine Mice Models, Structural Molecular Sequence Data Protein Conformation Receptors, Antigen, B-Cell - genetics Sandbars Sequence Homology, Nucleic Acid Sharks Sharks - genetics Sharks - immunology Space life sciences T cell antigen receptors |
title | Evolution of Immunoglobulin Light Chains: cDNA Clones Specifying Sandbar Shark Constant Regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Immunoglobulin%20Light%20Chains:%20cDNA%20Clones%20Specifying%20Sandbar%20Shark%20Constant%20Regions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schluter,%20Samuel%20F.&rft.date=1989-12-01&rft.volume=86&rft.issue=24&rft.spage=9961&rft.epage=9965&rft.pages=9961-9965&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.86.24.9961&rft_dat=%3Cjstor_proqu%3E34776%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15440389&rft_id=info:pmid/2513577&rft_jstor_id=34776&rfr_iscdi=true |