Troglitazone increases the resistance of low density lipoprotein to oxidation in healthy volunteers

The oxidative modification of low density lipoprotein is of importance in atherogenesis. Antioxidant supplementation has been shown, in published work, to increase low density lipoprotein resistance to oxidation in both healthy subjects and diabetic subjects; in animal studies a contemporary reducti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetologia 1997-10, Vol.40 (10), p.1211-1218
Hauptverfasser: COMINACINI, L, YOUNG, M. M. R, CAPRIATI, A, GARBIN, U, FRATTA PASINI, A, CAMPAGNOLA, M, DAVOLI, A, RIGONI, A, CONTESSI, G. B, LO CASCIO, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The oxidative modification of low density lipoprotein is of importance in atherogenesis. Antioxidant supplementation has been shown, in published work, to increase low density lipoprotein resistance to oxidation in both healthy subjects and diabetic subjects; in animal studies a contemporary reduction in atherogenesis has been demonstrated. Troglitazone is a novel oral antidiabetic drug which has similarities in structure with vitamin E. The present study assessed the effect of troglitazone 400 mg twice daily for 2 weeks on the resistance of low density lipoprotein to oxidation in healthy male subjects. Ten subjects received troglitazone and ten received placebo in a randomised, placebo-controlled, parallel-group design. The lag phase (a measure of the resistance of low density lipoprotein to oxidation) was determined by measurement of fluorescence development during copper-catalysed oxidative modification of low density lipoprotein. The lag phase was increased by 27 % (p < 0.001) at week 1 and by 24% (p < 0.001) at week 2 in the troglitazone treated group compared with the placebo group. A number of variables known to influence the resistance of low density lipoprotein to oxidation were measured. They included macronutrient consumption, plasma and lipoprotein lipid profile, alpha-tocopherol, beta-carotene levels in low density lipoprotein, low density lipoprotein particle size, mono and polyunsaturated fatty acid content of low density lipoprotein and pre-formed low density lipoprotein hydroperoxide levels in low density lipoprotein. Troglitazone was associated with a significant reduction in the amount of pre-formed low density lipoprotein lipid hydroperoxides. At weeks 1 and 2, the low density lipoprotein hydroperoxide content was 17% (p < 0.05) and 18% (p < 0.05) lower in the troglitazone group compared to placebo, respectively. In summary the increase in lag phase duration in the troglitazone group appeared to be due to the compound's activity as an antioxidant and to its ability to reduce the amount of preformed low density lipoprotein lipid hydroperoxides. This antioxidant activity could provide considerable benefit to diabetic patients where atherosclerosis accounts for the majority of total mortality.
ISSN:0012-186X
1432-0428
DOI:10.1007/s001250050809