Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes

A single-site mutant of Escherichia coli glutaminyl-synthetase (D235N, GlnRS7) that incorrectly acylates in vivo the amber suppressor supF tyrosine transfer RNA (tRNA$^{\text{Tyr}}$) with glutamine has been described. Two additional mutant forms of the enzyme showing this misacylation property have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1989-12, Vol.246 (4934), p.1152-1154
Hauptverfasser: Perona, John J., Swanson, Robert N., Rould, Mark A., Steitz, Thomas A., Soll, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1154
container_issue 4934
container_start_page 1152
container_title Science (American Association for the Advancement of Science)
container_volume 246
creator Perona, John J.
Swanson, Robert N.
Rould, Mark A.
Steitz, Thomas A.
Soll, Dieter
description A single-site mutant of Escherichia coli glutaminyl-synthetase (D235N, GlnRS7) that incorrectly acylates in vivo the amber suppressor supF tyrosine transfer RNA (tRNA$^{\text{Tyr}}$) with glutamine has been described. Two additional mutant forms of the enzyme showing this misacylation property have now been isolated in vivo (D235G, GlnRS10; I129T, GlnRS15). All three mischarging mutant enzymes still retain a certain degree of tRNA specificity; in vivo they acylate supE glutaminyl tRNA (tRNA$^{\text{Gln}}$) and supF tRNA$^{\text{Tyr}}$ but not a number of other suppressor tRNA's. These genetic experiments define two positions in GlnRS where amino acid substitution results in a relaxed specificity of tRNA discrimination. The crystal structure of the GlnRS:tRNA$^{\text{Gln}}$ complex provides a structural basis for interpreting these data. In the wild-type enzyme Asp$^{235}$ makes sequence-specific hydrogen bonds through its side chain carboxylate group with base pair G3 $\cdot $ C70 in the minor groove of the acceptor stem of the tRNA. This observation implicates base pair 3 $\cdot $70 as one of the identity determinants of tRNA$^{\text{Gln}}$ Isoleucine 129 is positioned adjacent to the phosphate of nucleotide C74, which forms part of a hairpin structure adopted by the acceptor end of the complexed tRNA molecule. These results identify specific areas in the structure of the complex that are critical to accurate tRNA discrimination by GlnRS.
doi_str_mv 10.1126/science.2686030
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79352905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A8227181</galeid><jstor_id>1704760</jstor_id><sourcerecordid>A8227181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-915acb684f9229fc8328d92cb2ae5ffebaf727eff0f2d5b8ff54f220353e4a4f3</originalsourceid><addsrcrecordid>eNqN081v0zAUAHALgUYpnLmAFE0IDiOdP-J8HLuqlEndKlHgwiFy3efiKnGG7UiEvx5XjbaBKrXKIYrfL-_F8XsIvSZ4RAhNL53UYCSMaJqnmOEnaEBwweOCYvYUDTBmaZzjjD9HL5zbYhxiBTtDZz0foB9Lb1vpWyuq6Eo47SLV2OhGO1Fr0wjZVcLrxkSrLrppvTA-mo4i2VQ6mlXhOaCuiv2X23G07Iz_CV44iKbmT1eDe4meKVE5eNXfh-jbp-nXyed4vphdT8bzWKYJ93FBuJCrNE9UQWmhZM5ovi6oXFEBXClYCZXRDJTCiq75KleKJ4qGDXIGiUgUG6L3-7x3tvnVgvNlrZ2EqhIGmtaVWcE4LTA_CllKOcE8PwopIZxzRo7CwAqeYBbg-X9w27TWhN8SkoWdhO_blb3Yo42ooNRGNd4KuQED4XgaA0qH5XFOaUbyXe2PB3S41lBreYB_-IcH4eG334jWufJ6eXuqXHw_VV7NTpT5bP5YXhySoecq2EAZOmeyeKwv91raxjkLqryzuha2KwkudxNS9hNS9i0f3njbn0S7qmF97x_i7_q4cFJUygojtbtnaZYXSRiiIXqzZ1vnG_tQNcNJFvL8BbqjHt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213532908</pqid></control><display><type>article</type><title>Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Perona, John J. ; Swanson, Robert N. ; Rould, Mark A. ; Steitz, Thomas A. ; Soll, Dieter</creator><creatorcontrib>Perona, John J. ; Swanson, Robert N. ; Rould, Mark A. ; Steitz, Thomas A. ; Soll, Dieter</creatorcontrib><description>A single-site mutant of Escherichia coli glutaminyl-synthetase (D235N, GlnRS7) that incorrectly acylates in vivo the amber suppressor supF tyrosine transfer RNA (tRNA$^{\text{Tyr}}$) with glutamine has been described. Two additional mutant forms of the enzyme showing this misacylation property have now been isolated in vivo (D235G, GlnRS10; I129T, GlnRS15). All three mischarging mutant enzymes still retain a certain degree of tRNA specificity; in vivo they acylate supE glutaminyl tRNA (tRNA$^{\text{Gln}}$) and supF tRNA$^{\text{Tyr}}$ but not a number of other suppressor tRNA's. These genetic experiments define two positions in GlnRS where amino acid substitution results in a relaxed specificity of tRNA discrimination. The crystal structure of the GlnRS:tRNA$^{\text{Gln}}$ complex provides a structural basis for interpreting these data. In the wild-type enzyme Asp$^{235}$ makes sequence-specific hydrogen bonds through its side chain carboxylate group with base pair G3 $\cdot $ C70 in the minor groove of the acceptor stem of the tRNA. This observation implicates base pair 3 $\cdot $70 as one of the identity determinants of tRNA$^{\text{Gln}}$ Isoleucine 129 is positioned adjacent to the phosphate of nucleotide C74, which forms part of a hairpin structure adopted by the acceptor end of the complexed tRNA molecule. These results identify specific areas in the structure of the complex that are critical to accurate tRNA discrimination by GlnRS.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.2686030</identifier><identifier>PMID: 2686030</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>Acylation ; Alleles ; Amino acids ; Amino Acyl-tRNA Synthetases - genetics ; Amino Acyl-tRNA Synthetases - metabolism ; Aspartic Acid ; Bacteriophages ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Crystallization ; Enzymes ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Genetic aspects ; Genetic mutation ; Genetics ; Glutamine - metabolism ; Hydrogen ; Hydrogen Bonding ; Isoleucine ; Ligases ; Molecular and cellular biology ; Molecular genetics ; Molecular Structure ; Molecules ; Mutation ; Nucleotides ; RNA, Transfer, Gln - metabolism ; RNA, Transfer, Tyr ; Structure-Activity Relationship ; Substrate Specificity ; Suppression, Genetic ; Transcription. Transcription factor. Splicing. Rna processing ; Transfer RNA ; Transglutaminases</subject><ispartof>Science (American Association for the Advancement of Science), 1989-12, Vol.246 (4934), p.1152-1154</ispartof><rights>Copyright 1989 The American Association for the Advancement of Science</rights><rights>1990 INIST-CNRS</rights><rights>COPYRIGHT 1989 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1989 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Dec 1, 1989</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645t-915acb684f9229fc8328d92cb2ae5ffebaf727eff0f2d5b8ff54f220353e4a4f3</citedby><cites>FETCH-LOGICAL-c645t-915acb684f9229fc8328d92cb2ae5ffebaf727eff0f2d5b8ff54f220353e4a4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1704760$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1704760$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6789459$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2686030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perona, John J.</creatorcontrib><creatorcontrib>Swanson, Robert N.</creatorcontrib><creatorcontrib>Rould, Mark A.</creatorcontrib><creatorcontrib>Steitz, Thomas A.</creatorcontrib><creatorcontrib>Soll, Dieter</creatorcontrib><title>Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A single-site mutant of Escherichia coli glutaminyl-synthetase (D235N, GlnRS7) that incorrectly acylates in vivo the amber suppressor supF tyrosine transfer RNA (tRNA$^{\text{Tyr}}$) with glutamine has been described. Two additional mutant forms of the enzyme showing this misacylation property have now been isolated in vivo (D235G, GlnRS10; I129T, GlnRS15). All three mischarging mutant enzymes still retain a certain degree of tRNA specificity; in vivo they acylate supE glutaminyl tRNA (tRNA$^{\text{Gln}}$) and supF tRNA$^{\text{Tyr}}$ but not a number of other suppressor tRNA's. These genetic experiments define two positions in GlnRS where amino acid substitution results in a relaxed specificity of tRNA discrimination. The crystal structure of the GlnRS:tRNA$^{\text{Gln}}$ complex provides a structural basis for interpreting these data. In the wild-type enzyme Asp$^{235}$ makes sequence-specific hydrogen bonds through its side chain carboxylate group with base pair G3 $\cdot $ C70 in the minor groove of the acceptor stem of the tRNA. This observation implicates base pair 3 $\cdot $70 as one of the identity determinants of tRNA$^{\text{Gln}}$ Isoleucine 129 is positioned adjacent to the phosphate of nucleotide C74, which forms part of a hairpin structure adopted by the acceptor end of the complexed tRNA molecule. These results identify specific areas in the structure of the complex that are critical to accurate tRNA discrimination by GlnRS.</description><subject>Acylation</subject><subject>Alleles</subject><subject>Amino acids</subject><subject>Amino Acyl-tRNA Synthetases - genetics</subject><subject>Amino Acyl-tRNA Synthetases - metabolism</subject><subject>Aspartic Acid</subject><subject>Bacteriophages</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Crystallization</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic aspects</subject><subject>Genetic mutation</subject><subject>Genetics</subject><subject>Glutamine - metabolism</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Isoleucine</subject><subject>Ligases</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Structure</subject><subject>Molecules</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>RNA, Transfer, Gln - metabolism</subject><subject>RNA, Transfer, Tyr</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Suppression, Genetic</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><subject>Transfer RNA</subject><subject>Transglutaminases</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN081v0zAUAHALgUYpnLmAFE0IDiOdP-J8HLuqlEndKlHgwiFy3efiKnGG7UiEvx5XjbaBKrXKIYrfL-_F8XsIvSZ4RAhNL53UYCSMaJqnmOEnaEBwweOCYvYUDTBmaZzjjD9HL5zbYhxiBTtDZz0foB9Lb1vpWyuq6Eo47SLV2OhGO1Fr0wjZVcLrxkSrLrppvTA-mo4i2VQ6mlXhOaCuiv2X23G07Iz_CV44iKbmT1eDe4meKVE5eNXfh-jbp-nXyed4vphdT8bzWKYJ93FBuJCrNE9UQWmhZM5ovi6oXFEBXClYCZXRDJTCiq75KleKJ4qGDXIGiUgUG6L3-7x3tvnVgvNlrZ2EqhIGmtaVWcE4LTA_CllKOcE8PwopIZxzRo7CwAqeYBbg-X9w27TWhN8SkoWdhO_blb3Yo42ooNRGNd4KuQED4XgaA0qH5XFOaUbyXe2PB3S41lBreYB_-IcH4eG334jWufJ6eXuqXHw_VV7NTpT5bP5YXhySoecq2EAZOmeyeKwv91raxjkLqryzuha2KwkudxNS9hNS9i0f3njbn0S7qmF97x_i7_q4cFJUygojtbtnaZYXSRiiIXqzZ1vnG_tQNcNJFvL8BbqjHt0</recordid><startdate>19891201</startdate><enddate>19891201</enddate><creator>Perona, John J.</creator><creator>Swanson, Robert N.</creator><creator>Rould, Mark A.</creator><creator>Steitz, Thomas A.</creator><creator>Soll, Dieter</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19891201</creationdate><title>Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes</title><author>Perona, John J. ; Swanson, Robert N. ; Rould, Mark A. ; Steitz, Thomas A. ; Soll, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-915acb684f9229fc8328d92cb2ae5ffebaf727eff0f2d5b8ff54f220353e4a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Acylation</topic><topic>Alleles</topic><topic>Amino acids</topic><topic>Amino Acyl-tRNA Synthetases - genetics</topic><topic>Amino Acyl-tRNA Synthetases - metabolism</topic><topic>Aspartic Acid</topic><topic>Bacteriophages</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Crystallization</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic aspects</topic><topic>Genetic mutation</topic><topic>Genetics</topic><topic>Glutamine - metabolism</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Isoleucine</topic><topic>Ligases</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Structure</topic><topic>Molecules</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>RNA, Transfer, Gln - metabolism</topic><topic>RNA, Transfer, Tyr</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Suppression, Genetic</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><topic>Transfer RNA</topic><topic>Transglutaminases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perona, John J.</creatorcontrib><creatorcontrib>Swanson, Robert N.</creatorcontrib><creatorcontrib>Rould, Mark A.</creatorcontrib><creatorcontrib>Steitz, Thomas A.</creatorcontrib><creatorcontrib>Soll, Dieter</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perona, John J.</au><au>Swanson, Robert N.</au><au>Rould, Mark A.</au><au>Steitz, Thomas A.</au><au>Soll, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1989-12-01</date><risdate>1989</risdate><volume>246</volume><issue>4934</issue><spage>1152</spage><epage>1154</epage><pages>1152-1154</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>A single-site mutant of Escherichia coli glutaminyl-synthetase (D235N, GlnRS7) that incorrectly acylates in vivo the amber suppressor supF tyrosine transfer RNA (tRNA$^{\text{Tyr}}$) with glutamine has been described. Two additional mutant forms of the enzyme showing this misacylation property have now been isolated in vivo (D235G, GlnRS10; I129T, GlnRS15). All three mischarging mutant enzymes still retain a certain degree of tRNA specificity; in vivo they acylate supE glutaminyl tRNA (tRNA$^{\text{Gln}}$) and supF tRNA$^{\text{Tyr}}$ but not a number of other suppressor tRNA's. These genetic experiments define two positions in GlnRS where amino acid substitution results in a relaxed specificity of tRNA discrimination. The crystal structure of the GlnRS:tRNA$^{\text{Gln}}$ complex provides a structural basis for interpreting these data. In the wild-type enzyme Asp$^{235}$ makes sequence-specific hydrogen bonds through its side chain carboxylate group with base pair G3 $\cdot $ C70 in the minor groove of the acceptor stem of the tRNA. This observation implicates base pair 3 $\cdot $70 as one of the identity determinants of tRNA$^{\text{Gln}}$ Isoleucine 129 is positioned adjacent to the phosphate of nucleotide C74, which forms part of a hairpin structure adopted by the acceptor end of the complexed tRNA molecule. These results identify specific areas in the structure of the complex that are critical to accurate tRNA discrimination by GlnRS.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>2686030</pmid><doi>10.1126/science.2686030</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1989-12, Vol.246 (4934), p.1152-1154
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_79352905
source MEDLINE; JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Acylation
Alleles
Amino acids
Amino Acyl-tRNA Synthetases - genetics
Amino Acyl-tRNA Synthetases - metabolism
Aspartic Acid
Bacteriophages
Binding Sites
Biochemistry
Biological and medical sciences
Crystallization
Enzymes
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
Genetic aspects
Genetic mutation
Genetics
Glutamine - metabolism
Hydrogen
Hydrogen Bonding
Isoleucine
Ligases
Molecular and cellular biology
Molecular genetics
Molecular Structure
Molecules
Mutation
Nucleotides
RNA, Transfer, Gln - metabolism
RNA, Transfer, Tyr
Structure-Activity Relationship
Substrate Specificity
Suppression, Genetic
Transcription. Transcription factor. Splicing. Rna processing
Transfer RNA
Transglutaminases
title Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20Misaminoacylation%20by%20Mutant%20E.%20coli%20Glutaminyl-tRNA%20Synthetase%20Enzymes&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Perona,%20John%20J.&rft.date=1989-12-01&rft.volume=246&rft.issue=4934&rft.spage=1152&rft.epage=1154&rft.pages=1152-1154&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.2686030&rft_dat=%3Cgale_proqu%3EA8227181%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213532908&rft_id=info:pmid/2686030&rft_galeid=A8227181&rft_jstor_id=1704760&rfr_iscdi=true