Surface Diffusion of Cellulases and Their Isolated Binding Domains on Cellulose

The surface diffusion rate of bacterial cellulases from Cellulomonas fimi on cellulose was quantified using fluorescence recovery after photobleaching analysis. Studies were performed on an exo-β-1–4-glycanase (Cex), an endo-β-1–4-glucanase (CenA), and their respective isolated cellulose-binding dom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1997-09, Vol.272 (38), p.24016-24023
Hauptverfasser: Jervis, Eric J., Haynes, Charles A., Kilburn, Douglas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24023
container_issue 38
container_start_page 24016
container_title The Journal of biological chemistry
container_volume 272
creator Jervis, Eric J.
Haynes, Charles A.
Kilburn, Douglas G.
description The surface diffusion rate of bacterial cellulases from Cellulomonas fimi on cellulose was quantified using fluorescence recovery after photobleaching analysis. Studies were performed on an exo-β-1–4-glycanase (Cex), an endo-β-1–4-glucanase (CenA), and their respective isolated cellulose-binding domains (CBDs). Although these cellulose-binding domains bind irreversibly to microcrystalline cellulose, greater than 70% of bound molecules are mobile on the cellulose surface. Surface diffusion rates are dependent on surface coverage and range from a low of 2 × 10−11 to a maximum of 1.2 × 10−10 cm2/s. The fraction of mobile molecules increases only slightly with increasing fractional surface coverage density. Results demonstrate that the packing of C. fimicellulases and their isolated binding domains onto the cellulose surface is a dynamic process. This suggests that the exclusion of potential CBD binding sites on the cellulose due to steric effects of neighboring bound CBDs may not fully explain the apparent negative cooperativity exhibited in CBD adsorption isotherms. Comparison with the kinetics of cellulase hydrolysis of crystalline substrate suggests that surface diffusion rates do not limit cellulase activity.
doi_str_mv 10.1074/jbc.272.38.24016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79287304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819658862</els_id><sourcerecordid>16086144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-8adb4348433ec3694c7821e860bd2e7f0126ecd7b47544cf137b9d7a8db35f1a3</originalsourceid><addsrcrecordid>eNqFkDtrHDEURoWJcdaPPk1ARXA3a71mpEmXrJ9gcGEb0gmNdOWVmRk50k6M_73lzJIiYHybW9zvfFwOQl8oWVIixcljZ5dMsiVXSyYIbXbQghLFK17TX5_QghBGq5bV6jPaz_mRlBEt3UN7LWtrXosFurmdkjcW8Gnwfsohjjh6vIK-n3qTIWMzOny3hpDwVY692YDDP8PowviAT-NgwphxYWYgZjhEu970GY62-wDdn5_drS6r65uLq9WP68oKITeVMq4TXCjBOVjetMJKxSiohnSOgfSEsgask52QtRDWUy671kmjXMdrTw0_QMdz71OKvyfIGz2EbMsXZoQ4ZS1bpiQn4sMgbYhqqHgLkjloU8w5gddPKQwmvWhK9JtsXWTrIltzpf_KLsjXbffUDeD-AVu75f5tvq_Dw_o5JNBdiHYNw_813-cYFGF_AiSdbYDRgiuI3WgXw_s_vAI6NJku</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16086144</pqid></control><display><type>article</type><title>Surface Diffusion of Cellulases and Their Isolated Binding Domains on Cellulose</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Jervis, Eric J. ; Haynes, Charles A. ; Kilburn, Douglas G.</creator><creatorcontrib>Jervis, Eric J. ; Haynes, Charles A. ; Kilburn, Douglas G.</creatorcontrib><description>The surface diffusion rate of bacterial cellulases from Cellulomonas fimi on cellulose was quantified using fluorescence recovery after photobleaching analysis. Studies were performed on an exo-β-1–4-glycanase (Cex), an endo-β-1–4-glucanase (CenA), and their respective isolated cellulose-binding domains (CBDs). Although these cellulose-binding domains bind irreversibly to microcrystalline cellulose, greater than 70% of bound molecules are mobile on the cellulose surface. Surface diffusion rates are dependent on surface coverage and range from a low of 2 × 10−11 to a maximum of 1.2 × 10−10 cm2/s. The fraction of mobile molecules increases only slightly with increasing fractional surface coverage density. Results demonstrate that the packing of C. fimicellulases and their isolated binding domains onto the cellulose surface is a dynamic process. This suggests that the exclusion of potential CBD binding sites on the cellulose due to steric effects of neighboring bound CBDs may not fully explain the apparent negative cooperativity exhibited in CBD adsorption isotherms. Comparison with the kinetics of cellulase hydrolysis of crystalline substrate suggests that surface diffusion rates do not limit cellulase activity.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.272.38.24016</identifier><identifier>PMID: 9295354</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cellulase - chemistry ; Cellulomonas fimi ; Cellulose - chemistry ; Diffusion ; Photochemistry ; Surface Properties</subject><ispartof>The Journal of biological chemistry, 1997-09, Vol.272 (38), p.24016-24023</ispartof><rights>1997 © 1997 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-8adb4348433ec3694c7821e860bd2e7f0126ecd7b47544cf137b9d7a8db35f1a3</citedby><cites>FETCH-LOGICAL-c447t-8adb4348433ec3694c7821e860bd2e7f0126ecd7b47544cf137b9d7a8db35f1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9295354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jervis, Eric J.</creatorcontrib><creatorcontrib>Haynes, Charles A.</creatorcontrib><creatorcontrib>Kilburn, Douglas G.</creatorcontrib><title>Surface Diffusion of Cellulases and Their Isolated Binding Domains on Cellulose</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The surface diffusion rate of bacterial cellulases from Cellulomonas fimi on cellulose was quantified using fluorescence recovery after photobleaching analysis. Studies were performed on an exo-β-1–4-glycanase (Cex), an endo-β-1–4-glucanase (CenA), and their respective isolated cellulose-binding domains (CBDs). Although these cellulose-binding domains bind irreversibly to microcrystalline cellulose, greater than 70% of bound molecules are mobile on the cellulose surface. Surface diffusion rates are dependent on surface coverage and range from a low of 2 × 10−11 to a maximum of 1.2 × 10−10 cm2/s. The fraction of mobile molecules increases only slightly with increasing fractional surface coverage density. Results demonstrate that the packing of C. fimicellulases and their isolated binding domains onto the cellulose surface is a dynamic process. This suggests that the exclusion of potential CBD binding sites on the cellulose due to steric effects of neighboring bound CBDs may not fully explain the apparent negative cooperativity exhibited in CBD adsorption isotherms. Comparison with the kinetics of cellulase hydrolysis of crystalline substrate suggests that surface diffusion rates do not limit cellulase activity.</description><subject>Cellulase - chemistry</subject><subject>Cellulomonas fimi</subject><subject>Cellulose - chemistry</subject><subject>Diffusion</subject><subject>Photochemistry</subject><subject>Surface Properties</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtrHDEURoWJcdaPPk1ARXA3a71mpEmXrJ9gcGEb0gmNdOWVmRk50k6M_73lzJIiYHybW9zvfFwOQl8oWVIixcljZ5dMsiVXSyYIbXbQghLFK17TX5_QghBGq5bV6jPaz_mRlBEt3UN7LWtrXosFurmdkjcW8Gnwfsohjjh6vIK-n3qTIWMzOny3hpDwVY692YDDP8PowviAT-NgwphxYWYgZjhEu970GY62-wDdn5_drS6r65uLq9WP68oKITeVMq4TXCjBOVjetMJKxSiohnSOgfSEsgask52QtRDWUy671kmjXMdrTw0_QMdz71OKvyfIGz2EbMsXZoQ4ZS1bpiQn4sMgbYhqqHgLkjloU8w5gddPKQwmvWhK9JtsXWTrIltzpf_KLsjXbffUDeD-AVu75f5tvq_Dw_o5JNBdiHYNw_813-cYFGF_AiSdbYDRgiuI3WgXw_s_vAI6NJku</recordid><startdate>19970919</startdate><enddate>19970919</enddate><creator>Jervis, Eric J.</creator><creator>Haynes, Charles A.</creator><creator>Kilburn, Douglas G.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19970919</creationdate><title>Surface Diffusion of Cellulases and Their Isolated Binding Domains on Cellulose</title><author>Jervis, Eric J. ; Haynes, Charles A. ; Kilburn, Douglas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-8adb4348433ec3694c7821e860bd2e7f0126ecd7b47544cf137b9d7a8db35f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Cellulase - chemistry</topic><topic>Cellulomonas fimi</topic><topic>Cellulose - chemistry</topic><topic>Diffusion</topic><topic>Photochemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jervis, Eric J.</creatorcontrib><creatorcontrib>Haynes, Charles A.</creatorcontrib><creatorcontrib>Kilburn, Douglas G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jervis, Eric J.</au><au>Haynes, Charles A.</au><au>Kilburn, Douglas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Diffusion of Cellulases and Their Isolated Binding Domains on Cellulose</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1997-09-19</date><risdate>1997</risdate><volume>272</volume><issue>38</issue><spage>24016</spage><epage>24023</epage><pages>24016-24023</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The surface diffusion rate of bacterial cellulases from Cellulomonas fimi on cellulose was quantified using fluorescence recovery after photobleaching analysis. Studies were performed on an exo-β-1–4-glycanase (Cex), an endo-β-1–4-glucanase (CenA), and their respective isolated cellulose-binding domains (CBDs). Although these cellulose-binding domains bind irreversibly to microcrystalline cellulose, greater than 70% of bound molecules are mobile on the cellulose surface. Surface diffusion rates are dependent on surface coverage and range from a low of 2 × 10−11 to a maximum of 1.2 × 10−10 cm2/s. The fraction of mobile molecules increases only slightly with increasing fractional surface coverage density. Results demonstrate that the packing of C. fimicellulases and their isolated binding domains onto the cellulose surface is a dynamic process. This suggests that the exclusion of potential CBD binding sites on the cellulose due to steric effects of neighboring bound CBDs may not fully explain the apparent negative cooperativity exhibited in CBD adsorption isotherms. Comparison with the kinetics of cellulase hydrolysis of crystalline substrate suggests that surface diffusion rates do not limit cellulase activity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9295354</pmid><doi>10.1074/jbc.272.38.24016</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1997-09, Vol.272 (38), p.24016-24023
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_79287304
source MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Cellulase - chemistry
Cellulomonas fimi
Cellulose - chemistry
Diffusion
Photochemistry
Surface Properties
title Surface Diffusion of Cellulases and Their Isolated Binding Domains on Cellulose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Diffusion%20of%20Cellulases%20and%20Their%20Isolated%20Binding%20Domains%20on%20Cellulose&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Jervis,%20Eric%20J.&rft.date=1997-09-19&rft.volume=272&rft.issue=38&rft.spage=24016&rft.epage=24023&rft.pages=24016-24023&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.272.38.24016&rft_dat=%3Cproquest_cross%3E16086144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16086144&rft_id=info:pmid/9295354&rft_els_id=S0021925819658862&rfr_iscdi=true