Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast

Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1997-09, Vol.94 (18), p.9757-9762
Hauptverfasser: Datta, A, Hendrix, M, Lipsitch, M, Jinks-Robertson, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9762
container_issue 18
container_start_page 9757
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 94
creator Datta, A
Hendrix, M
Lipsitch, M
Jinks-Robertson, S
description Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence.
doi_str_mv 10.1073/pnas.94.18.9757
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79243222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43098</jstor_id><sourcerecordid>43098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-d0ffa1c7b0ccfe0f3df01cf2f33ffbedc2da9ea231c61e21161975aa5ee7481d3</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIVNLCGQkJZPUAp03HH1mvJS5Vy5dUwQF6thzvOHG0WQfbW8h_j9NE4eMApzm83xvNvFdVzyhMKUh-sRlMmioxpe1UyZl8UE0oKFo3QsHDagLAZN0KJh5XpymtAEDNWjipThSTM6rkpPp-PZqexNBjIi5Ecv3pkiT8NuJgkfgOh-zzlpihI3mJZO3T2mS7JBE3xkeStinjmvjhXo24GHuTfRhIcIXNIXtLbAwp-WFRhzuMO3SLJuUn1SNn-oRPD_Osun339uvVh_rm8_uPV5c3tW2gyXUHzhlq5RysdQiOdw6odcxx7twcO8s6o9AwTm1DkVHalK9mxswQpWhpx8-qN_u9m3G-Lnx5KJpeb6Jfm7jVwXj9pzL4pV6EO804a3ixvzrYYyihpKxLBBb73gwYxqSlYoIzxv4L0gaUEK0s4Plf4CqMcSgZaAaUc9UqUaCLPXQfXkR3PJiC3vWud71rJTRt9a734njx-59H_lB00V8f9J3xqB4XaDf2fcYfuZAv_0kW4PkeWKUc4pEQHFT76w5ngjaL6JO-_UKVktBQ4JL_BE2G1t4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201339894</pqid></control><display><type>article</type><title>Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Datta, A ; Hendrix, M ; Lipsitch, M ; Jinks-Robertson, S</creator><creatorcontrib>Datta, A ; Hendrix, M ; Lipsitch, M ; Jinks-Robertson, S</creatorcontrib><description>Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.18.9757</identifier><identifier>PMID: 9275197</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>ADN ; Biological Sciences ; Complementary DNA ; CROSSING OVER ; Crossing Over, Genetic ; Crossovers ; CRUZAMIENTO INTERCROMOSOMICO ; Deoxyribonucleic acid ; DNA ; DNA mismatch repair ; DNA REPAIR ; DNA, Fungal - genetics ; Evolutionary genetics ; Genetics ; HOMOLOGOUS RECOMBINATION ; Human genetics ; INHIBICION ; INHIBITION ; INTRONS ; Medical genetics ; MITOSE ; MITOSIS ; NUCLEOTIDE SEQUENCE ; NUCLEOTIDE SEQUENCE DIVERGENCE ; NUCLEOTIDE SEQUENCE MISMATCH ; Plasmids ; RECOMBINACION ; RECOMBINAISON ; RECOMBINATION ; Recombination, Genetic ; Regulatory sequences ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - genetics ; SECUENCIA NUCLEOTIDICA ; SEQUENCE NUCLEOTIDIQUE ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-09, Vol.94 (18), p.9757-9762</ispartof><rights>Copyright 1993-1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Sep 2, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-d0ffa1c7b0ccfe0f3df01cf2f33ffbedc2da9ea231c61e21161975aa5ee7481d3</citedby><cites>FETCH-LOGICAL-c606t-d0ffa1c7b0ccfe0f3df01cf2f33ffbedc2da9ea231c61e21161975aa5ee7481d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/18.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43098$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43098$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9275197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Datta, A</creatorcontrib><creatorcontrib>Hendrix, M</creatorcontrib><creatorcontrib>Lipsitch, M</creatorcontrib><creatorcontrib>Jinks-Robertson, S</creatorcontrib><title>Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence.</description><subject>ADN</subject><subject>Biological Sciences</subject><subject>Complementary DNA</subject><subject>CROSSING OVER</subject><subject>Crossing Over, Genetic</subject><subject>Crossovers</subject><subject>CRUZAMIENTO INTERCROMOSOMICO</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA mismatch repair</subject><subject>DNA REPAIR</subject><subject>DNA, Fungal - genetics</subject><subject>Evolutionary genetics</subject><subject>Genetics</subject><subject>HOMOLOGOUS RECOMBINATION</subject><subject>Human genetics</subject><subject>INHIBICION</subject><subject>INHIBITION</subject><subject>INTRONS</subject><subject>Medical genetics</subject><subject>MITOSE</subject><subject>MITOSIS</subject><subject>NUCLEOTIDE SEQUENCE</subject><subject>NUCLEOTIDE SEQUENCE DIVERGENCE</subject><subject>NUCLEOTIDE SEQUENCE MISMATCH</subject><subject>Plasmids</subject><subject>RECOMBINACION</subject><subject>RECOMBINAISON</subject><subject>RECOMBINATION</subject><subject>Recombination, Genetic</subject><subject>Regulatory sequences</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxVcIVNLCGQkJZPUAp03HH1mvJS5Vy5dUwQF6thzvOHG0WQfbW8h_j9NE4eMApzm83xvNvFdVzyhMKUh-sRlMmioxpe1UyZl8UE0oKFo3QsHDagLAZN0KJh5XpymtAEDNWjipThSTM6rkpPp-PZqexNBjIi5Ecv3pkiT8NuJgkfgOh-zzlpihI3mJZO3T2mS7JBE3xkeStinjmvjhXo24GHuTfRhIcIXNIXtLbAwp-WFRhzuMO3SLJuUn1SNn-oRPD_Osun339uvVh_rm8_uPV5c3tW2gyXUHzhlq5RysdQiOdw6odcxx7twcO8s6o9AwTm1DkVHalK9mxswQpWhpx8-qN_u9m3G-Lnx5KJpeb6Jfm7jVwXj9pzL4pV6EO804a3ixvzrYYyihpKxLBBb73gwYxqSlYoIzxv4L0gaUEK0s4Plf4CqMcSgZaAaUc9UqUaCLPXQfXkR3PJiC3vWud71rJTRt9a734njx-59H_lB00V8f9J3xqB4XaDf2fcYfuZAv_0kW4PkeWKUc4pEQHFT76w5ngjaL6JO-_UKVktBQ4JL_BE2G1t4</recordid><startdate>19970902</startdate><enddate>19970902</enddate><creator>Datta, A</creator><creator>Hendrix, M</creator><creator>Lipsitch, M</creator><creator>Jinks-Robertson, S</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970902</creationdate><title>Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast</title><author>Datta, A ; Hendrix, M ; Lipsitch, M ; Jinks-Robertson, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-d0ffa1c7b0ccfe0f3df01cf2f33ffbedc2da9ea231c61e21161975aa5ee7481d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ADN</topic><topic>Biological Sciences</topic><topic>Complementary DNA</topic><topic>CROSSING OVER</topic><topic>Crossing Over, Genetic</topic><topic>Crossovers</topic><topic>CRUZAMIENTO INTERCROMOSOMICO</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA mismatch repair</topic><topic>DNA REPAIR</topic><topic>DNA, Fungal - genetics</topic><topic>Evolutionary genetics</topic><topic>Genetics</topic><topic>HOMOLOGOUS RECOMBINATION</topic><topic>Human genetics</topic><topic>INHIBICION</topic><topic>INHIBITION</topic><topic>INTRONS</topic><topic>Medical genetics</topic><topic>MITOSE</topic><topic>MITOSIS</topic><topic>NUCLEOTIDE SEQUENCE</topic><topic>NUCLEOTIDE SEQUENCE DIVERGENCE</topic><topic>NUCLEOTIDE SEQUENCE MISMATCH</topic><topic>Plasmids</topic><topic>RECOMBINACION</topic><topic>RECOMBINAISON</topic><topic>RECOMBINATION</topic><topic>Recombination, Genetic</topic><topic>Regulatory sequences</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datta, A</creatorcontrib><creatorcontrib>Hendrix, M</creatorcontrib><creatorcontrib>Lipsitch, M</creatorcontrib><creatorcontrib>Jinks-Robertson, S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, A</au><au>Hendrix, M</au><au>Lipsitch, M</au><au>Jinks-Robertson, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-09-02</date><risdate>1997</risdate><volume>94</volume><issue>18</issue><spage>9757</spage><epage>9762</epage><pages>9757-9762</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9275197</pmid><doi>10.1073/pnas.94.18.9757</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1997-09, Vol.94 (18), p.9757-9762
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_79243222
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects ADN
Biological Sciences
Complementary DNA
CROSSING OVER
Crossing Over, Genetic
Crossovers
CRUZAMIENTO INTERCROMOSOMICO
Deoxyribonucleic acid
DNA
DNA mismatch repair
DNA REPAIR
DNA, Fungal - genetics
Evolutionary genetics
Genetics
HOMOLOGOUS RECOMBINATION
Human genetics
INHIBICION
INHIBITION
INTRONS
Medical genetics
MITOSE
MITOSIS
NUCLEOTIDE SEQUENCE
NUCLEOTIDE SEQUENCE DIVERGENCE
NUCLEOTIDE SEQUENCE MISMATCH
Plasmids
RECOMBINACION
RECOMBINAISON
RECOMBINATION
Recombination, Genetic
Regulatory sequences
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - genetics
SECUENCIA NUCLEOTIDICA
SEQUENCE NUCLEOTIDIQUE
Yeast
Yeasts
title Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20roles%20for%20DNA%20sequence%20identity%20and%20the%20mismatch%20repair%20system%20in%20the%20regulation%20of%20mitotic%20crossing-over%20in%20yeast&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Datta,%20A&rft.date=1997-09-02&rft.volume=94&rft.issue=18&rft.spage=9757&rft.epage=9762&rft.pages=9757-9762&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.18.9757&rft_dat=%3Cjstor_proqu%3E43098%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201339894&rft_id=info:pmid/9275197&rft_jstor_id=43098&rfr_iscdi=true