Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast
Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1997-09, Vol.94 (18), p.9757-9762 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9762 |
---|---|
container_issue | 18 |
container_start_page | 9757 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 94 |
creator | Datta, A Hendrix, M Lipsitch, M Jinks-Robertson, S |
description | Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence. |
doi_str_mv | 10.1073/pnas.94.18.9757 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79243222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43098</jstor_id><sourcerecordid>43098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-d0ffa1c7b0ccfe0f3df01cf2f33ffbedc2da9ea231c61e21161975aa5ee7481d3</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIVNLCGQkJZPUAp03HH1mvJS5Vy5dUwQF6thzvOHG0WQfbW8h_j9NE4eMApzm83xvNvFdVzyhMKUh-sRlMmioxpe1UyZl8UE0oKFo3QsHDagLAZN0KJh5XpymtAEDNWjipThSTM6rkpPp-PZqexNBjIi5Ecv3pkiT8NuJgkfgOh-zzlpihI3mJZO3T2mS7JBE3xkeStinjmvjhXo24GHuTfRhIcIXNIXtLbAwp-WFRhzuMO3SLJuUn1SNn-oRPD_Osun339uvVh_rm8_uPV5c3tW2gyXUHzhlq5RysdQiOdw6odcxx7twcO8s6o9AwTm1DkVHalK9mxswQpWhpx8-qN_u9m3G-Lnx5KJpeb6Jfm7jVwXj9pzL4pV6EO804a3ixvzrYYyihpKxLBBb73gwYxqSlYoIzxv4L0gaUEK0s4Plf4CqMcSgZaAaUc9UqUaCLPXQfXkR3PJiC3vWud71rJTRt9a734njx-59H_lB00V8f9J3xqB4XaDf2fcYfuZAv_0kW4PkeWKUc4pEQHFT76w5ngjaL6JO-_UKVktBQ4JL_BE2G1t4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201339894</pqid></control><display><type>article</type><title>Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Datta, A ; Hendrix, M ; Lipsitch, M ; Jinks-Robertson, S</creator><creatorcontrib>Datta, A ; Hendrix, M ; Lipsitch, M ; Jinks-Robertson, S</creatorcontrib><description>Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.18.9757</identifier><identifier>PMID: 9275197</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>ADN ; Biological Sciences ; Complementary DNA ; CROSSING OVER ; Crossing Over, Genetic ; Crossovers ; CRUZAMIENTO INTERCROMOSOMICO ; Deoxyribonucleic acid ; DNA ; DNA mismatch repair ; DNA REPAIR ; DNA, Fungal - genetics ; Evolutionary genetics ; Genetics ; HOMOLOGOUS RECOMBINATION ; Human genetics ; INHIBICION ; INHIBITION ; INTRONS ; Medical genetics ; MITOSE ; MITOSIS ; NUCLEOTIDE SEQUENCE ; NUCLEOTIDE SEQUENCE DIVERGENCE ; NUCLEOTIDE SEQUENCE MISMATCH ; Plasmids ; RECOMBINACION ; RECOMBINAISON ; RECOMBINATION ; Recombination, Genetic ; Regulatory sequences ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - genetics ; SECUENCIA NUCLEOTIDICA ; SEQUENCE NUCLEOTIDIQUE ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-09, Vol.94 (18), p.9757-9762</ispartof><rights>Copyright 1993-1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Sep 2, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-d0ffa1c7b0ccfe0f3df01cf2f33ffbedc2da9ea231c61e21161975aa5ee7481d3</citedby><cites>FETCH-LOGICAL-c606t-d0ffa1c7b0ccfe0f3df01cf2f33ffbedc2da9ea231c61e21161975aa5ee7481d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/18.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43098$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43098$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9275197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Datta, A</creatorcontrib><creatorcontrib>Hendrix, M</creatorcontrib><creatorcontrib>Lipsitch, M</creatorcontrib><creatorcontrib>Jinks-Robertson, S</creatorcontrib><title>Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence.</description><subject>ADN</subject><subject>Biological Sciences</subject><subject>Complementary DNA</subject><subject>CROSSING OVER</subject><subject>Crossing Over, Genetic</subject><subject>Crossovers</subject><subject>CRUZAMIENTO INTERCROMOSOMICO</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA mismatch repair</subject><subject>DNA REPAIR</subject><subject>DNA, Fungal - genetics</subject><subject>Evolutionary genetics</subject><subject>Genetics</subject><subject>HOMOLOGOUS RECOMBINATION</subject><subject>Human genetics</subject><subject>INHIBICION</subject><subject>INHIBITION</subject><subject>INTRONS</subject><subject>Medical genetics</subject><subject>MITOSE</subject><subject>MITOSIS</subject><subject>NUCLEOTIDE SEQUENCE</subject><subject>NUCLEOTIDE SEQUENCE DIVERGENCE</subject><subject>NUCLEOTIDE SEQUENCE MISMATCH</subject><subject>Plasmids</subject><subject>RECOMBINACION</subject><subject>RECOMBINAISON</subject><subject>RECOMBINATION</subject><subject>Recombination, Genetic</subject><subject>Regulatory sequences</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxVcIVNLCGQkJZPUAp03HH1mvJS5Vy5dUwQF6thzvOHG0WQfbW8h_j9NE4eMApzm83xvNvFdVzyhMKUh-sRlMmioxpe1UyZl8UE0oKFo3QsHDagLAZN0KJh5XpymtAEDNWjipThSTM6rkpPp-PZqexNBjIi5Ecv3pkiT8NuJgkfgOh-zzlpihI3mJZO3T2mS7JBE3xkeStinjmvjhXo24GHuTfRhIcIXNIXtLbAwp-WFRhzuMO3SLJuUn1SNn-oRPD_Osun339uvVh_rm8_uPV5c3tW2gyXUHzhlq5RysdQiOdw6odcxx7twcO8s6o9AwTm1DkVHalK9mxswQpWhpx8-qN_u9m3G-Lnx5KJpeb6Jfm7jVwXj9pzL4pV6EO804a3ixvzrYYyihpKxLBBb73gwYxqSlYoIzxv4L0gaUEK0s4Plf4CqMcSgZaAaUc9UqUaCLPXQfXkR3PJiC3vWud71rJTRt9a734njx-59H_lB00V8f9J3xqB4XaDf2fcYfuZAv_0kW4PkeWKUc4pEQHFT76w5ngjaL6JO-_UKVktBQ4JL_BE2G1t4</recordid><startdate>19970902</startdate><enddate>19970902</enddate><creator>Datta, A</creator><creator>Hendrix, M</creator><creator>Lipsitch, M</creator><creator>Jinks-Robertson, S</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970902</creationdate><title>Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast</title><author>Datta, A ; Hendrix, M ; Lipsitch, M ; Jinks-Robertson, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-d0ffa1c7b0ccfe0f3df01cf2f33ffbedc2da9ea231c61e21161975aa5ee7481d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ADN</topic><topic>Biological Sciences</topic><topic>Complementary DNA</topic><topic>CROSSING OVER</topic><topic>Crossing Over, Genetic</topic><topic>Crossovers</topic><topic>CRUZAMIENTO INTERCROMOSOMICO</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA mismatch repair</topic><topic>DNA REPAIR</topic><topic>DNA, Fungal - genetics</topic><topic>Evolutionary genetics</topic><topic>Genetics</topic><topic>HOMOLOGOUS RECOMBINATION</topic><topic>Human genetics</topic><topic>INHIBICION</topic><topic>INHIBITION</topic><topic>INTRONS</topic><topic>Medical genetics</topic><topic>MITOSE</topic><topic>MITOSIS</topic><topic>NUCLEOTIDE SEQUENCE</topic><topic>NUCLEOTIDE SEQUENCE DIVERGENCE</topic><topic>NUCLEOTIDE SEQUENCE MISMATCH</topic><topic>Plasmids</topic><topic>RECOMBINACION</topic><topic>RECOMBINAISON</topic><topic>RECOMBINATION</topic><topic>Recombination, Genetic</topic><topic>Regulatory sequences</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datta, A</creatorcontrib><creatorcontrib>Hendrix, M</creatorcontrib><creatorcontrib>Lipsitch, M</creatorcontrib><creatorcontrib>Jinks-Robertson, S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, A</au><au>Hendrix, M</au><au>Lipsitch, M</au><au>Jinks-Robertson, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-09-02</date><risdate>1997</risdate><volume>94</volume><issue>18</issue><spage>9757</spage><epage>9762</epage><pages>9757-9762</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9275197</pmid><doi>10.1073/pnas.94.18.9757</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1997-09, Vol.94 (18), p.9757-9762 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_79243222 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | ADN Biological Sciences Complementary DNA CROSSING OVER Crossing Over, Genetic Crossovers CRUZAMIENTO INTERCROMOSOMICO Deoxyribonucleic acid DNA DNA mismatch repair DNA REPAIR DNA, Fungal - genetics Evolutionary genetics Genetics HOMOLOGOUS RECOMBINATION Human genetics INHIBICION INHIBITION INTRONS Medical genetics MITOSE MITOSIS NUCLEOTIDE SEQUENCE NUCLEOTIDE SEQUENCE DIVERGENCE NUCLEOTIDE SEQUENCE MISMATCH Plasmids RECOMBINACION RECOMBINAISON RECOMBINATION Recombination, Genetic Regulatory sequences SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - genetics SECUENCIA NUCLEOTIDICA SEQUENCE NUCLEOTIDIQUE Yeast Yeasts |
title | Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20roles%20for%20DNA%20sequence%20identity%20and%20the%20mismatch%20repair%20system%20in%20the%20regulation%20of%20mitotic%20crossing-over%20in%20yeast&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Datta,%20A&rft.date=1997-09-02&rft.volume=94&rft.issue=18&rft.spage=9757&rft.epage=9762&rft.pages=9757-9762&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.18.9757&rft_dat=%3Cjstor_proqu%3E43098%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201339894&rft_id=info:pmid/9275197&rft_jstor_id=43098&rfr_iscdi=true |