Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP
Small G proteins transduce signals from plasma-membrane receptors to control a wide range of cellular functions. These proteins are clustered into distinct families but all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of G proteins, which incl...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1997-08, Vol.388 (6643), p.693-697 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 697 |
---|---|
container_issue | 6643 |
container_start_page | 693 |
container_title | Nature (London) |
container_volume | 388 |
creator | RITTINGER, K WALKER, P. A ECCLESTON, J. F NURMAHOMED, K OWEN, D LAUE, E GAMBLIN, S. J SMERDON, S. J |
description | Small G proteins transduce signals from plasma-membrane receptors to control a wide range of cellular functions. These proteins are clustered into distinct families but all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of G proteins, which includes Cdc42Hs, activate effectors involved in the regulation of cytoskeleton formation, cell proliferation and the JNK signalling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GTPase-activating proteins (GAPs) that enhance the rate of GTP hydrolysis by up to 10(5) times. We report here the crystal structure of Cdc42Hs, with the non-hydrolysable GTP analogue GMPPNP, in complex with the GAP domain of p50rhoGAP at 2.7A resolution. In the complex Cdc42Hs interacts, mainly through its switch I and II regions, with a shallow pocket on rhoGAP which is lined with conserved residues. Arg 85 of rhoGAP interacts with the P-loop of Cdc42Hs, but from biochemical data and by analogy with the G-protein subunit G(i alpha1), we propose that it adopts a different conformation during the catalytic cycle which enables it to stabilize the transition state of the GTP-hydrolysis reaction. |
doi_str_mv | 10.1038/41805 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79207855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79207855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-988da33412b15fa276f8d309e28e602934723512097c618ce7b3853284af39ea3</originalsourceid><addsrcrecordid>eNp90UtLAzEQB_AgitbqRxCC-DitTt7JsRStQkEPevKwpGnWbtlHTbI-vr1bLT14EAbmMD9mGP4IHRO4IsD0NScaxA4aEK5kxqVWu2gAQHUGmskDdBjjEgAEUXwf7RsqKQc5QC_j8BWTrXBMoXOpCx63BbY41raq8ASvQpt82eC-XFuvKv-JP8q0wGnh8eTp0UafWZfKd5vK5nWrw6KdjB6P0F5hq-iPN32Inm9vnsZ32fRhcj8eTTPHDEmZ0XpuGeOEzogoLFWy0HMGxlPtJVDDuKJMEApGOUm082rGtGBUc1sw4y0boovfvf35t87HlNdldL6qbOPbLubKUFBaiB5e_g85E1oaI3t5-kcu2y40_Rc5Bc51L9fo_Be50MYYfJGvQlnb8JUTyNeZ5D-Z9O5ks6yb1X6-VZsQ-vnZZm6js1URbOPKuGVUCSM4sG_iX497</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204487436</pqid></control><display><type>article</type><title>Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>RITTINGER, K ; WALKER, P. A ; ECCLESTON, J. F ; NURMAHOMED, K ; OWEN, D ; LAUE, E ; GAMBLIN, S. J ; SMERDON, S. J</creator><creatorcontrib>RITTINGER, K ; WALKER, P. A ; ECCLESTON, J. F ; NURMAHOMED, K ; OWEN, D ; LAUE, E ; GAMBLIN, S. J ; SMERDON, S. J</creatorcontrib><description>Small G proteins transduce signals from plasma-membrane receptors to control a wide range of cellular functions. These proteins are clustered into distinct families but all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of G proteins, which includes Cdc42Hs, activate effectors involved in the regulation of cytoskeleton formation, cell proliferation and the JNK signalling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GTPase-activating proteins (GAPs) that enhance the rate of GTP hydrolysis by up to 10(5) times. We report here the crystal structure of Cdc42Hs, with the non-hydrolysable GTP analogue GMPPNP, in complex with the GAP domain of p50rhoGAP at 2.7A resolution. In the complex Cdc42Hs interacts, mainly through its switch I and II regions, with a shallow pocket on rhoGAP which is lined with conserved residues. Arg 85 of rhoGAP interacts with the P-loop of Cdc42Hs, but from biochemical data and by analogy with the G-protein subunit G(i alpha1), we propose that it adopts a different conformation during the catalytic cycle which enables it to stabilize the transition state of the GTP-hydrolysis reaction.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/41805</identifier><identifier>PMID: 9262406</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Analytical, structural and metabolic biochemistry ; Arginine - chemistry ; Binding and carrier proteins ; Biological and medical sciences ; cdc42 GTP-Binding Protein ; Cell Cycle Proteins - chemistry ; Chemical reactions ; Crystalline structure ; Crystallography, X-Ray ; Enzyme Activation ; Fundamental and applied biological sciences. Psychology ; GTP Phosphohydrolases - metabolism ; GTP-Binding Proteins - chemistry ; GTPase-Activating Proteins ; Guanosine Triphosphate - analogs & derivatives ; Guanosine Triphosphate - chemistry ; Hydrolysis ; Models, Molecular ; Molecular biology ; Molecular biophysics ; Protein Conformation ; Proteins ; Structure in molecular biology ; Studies</subject><ispartof>Nature (London), 1997-08, Vol.388 (6643), p.693-697</ispartof><rights>1997 INIST-CNRS</rights><rights>Copyright Macmillan Journals Ltd. Aug 14, 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-988da33412b15fa276f8d309e28e602934723512097c618ce7b3853284af39ea3</citedby><cites>FETCH-LOGICAL-c391t-988da33412b15fa276f8d309e28e602934723512097c618ce7b3853284af39ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2759540$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9262406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>RITTINGER, K</creatorcontrib><creatorcontrib>WALKER, P. A</creatorcontrib><creatorcontrib>ECCLESTON, J. F</creatorcontrib><creatorcontrib>NURMAHOMED, K</creatorcontrib><creatorcontrib>OWEN, D</creatorcontrib><creatorcontrib>LAUE, E</creatorcontrib><creatorcontrib>GAMBLIN, S. J</creatorcontrib><creatorcontrib>SMERDON, S. J</creatorcontrib><title>Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Small G proteins transduce signals from plasma-membrane receptors to control a wide range of cellular functions. These proteins are clustered into distinct families but all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of G proteins, which includes Cdc42Hs, activate effectors involved in the regulation of cytoskeleton formation, cell proliferation and the JNK signalling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GTPase-activating proteins (GAPs) that enhance the rate of GTP hydrolysis by up to 10(5) times. We report here the crystal structure of Cdc42Hs, with the non-hydrolysable GTP analogue GMPPNP, in complex with the GAP domain of p50rhoGAP at 2.7A resolution. In the complex Cdc42Hs interacts, mainly through its switch I and II regions, with a shallow pocket on rhoGAP which is lined with conserved residues. Arg 85 of rhoGAP interacts with the P-loop of Cdc42Hs, but from biochemical data and by analogy with the G-protein subunit G(i alpha1), we propose that it adopts a different conformation during the catalytic cycle which enables it to stabilize the transition state of the GTP-hydrolysis reaction.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Arginine - chemistry</subject><subject>Binding and carrier proteins</subject><subject>Biological and medical sciences</subject><subject>cdc42 GTP-Binding Protein</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Chemical reactions</subject><subject>Crystalline structure</subject><subject>Crystallography, X-Ray</subject><subject>Enzyme Activation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>GTP-Binding Proteins - chemistry</subject><subject>GTPase-Activating Proteins</subject><subject>Guanosine Triphosphate - analogs & derivatives</subject><subject>Guanosine Triphosphate - chemistry</subject><subject>Hydrolysis</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular biophysics</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Structure in molecular biology</subject><subject>Studies</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90UtLAzEQB_AgitbqRxCC-DitTt7JsRStQkEPevKwpGnWbtlHTbI-vr1bLT14EAbmMD9mGP4IHRO4IsD0NScaxA4aEK5kxqVWu2gAQHUGmskDdBjjEgAEUXwf7RsqKQc5QC_j8BWTrXBMoXOpCx63BbY41raq8ASvQpt82eC-XFuvKv-JP8q0wGnh8eTp0UafWZfKd5vK5nWrw6KdjB6P0F5hq-iPN32Inm9vnsZ32fRhcj8eTTPHDEmZ0XpuGeOEzogoLFWy0HMGxlPtJVDDuKJMEApGOUm082rGtGBUc1sw4y0boovfvf35t87HlNdldL6qbOPbLubKUFBaiB5e_g85E1oaI3t5-kcu2y40_Rc5Bc51L9fo_Be50MYYfJGvQlnb8JUTyNeZ5D-Z9O5ks6yb1X6-VZsQ-vnZZm6js1URbOPKuGVUCSM4sG_iX497</recordid><startdate>19970814</startdate><enddate>19970814</enddate><creator>RITTINGER, K</creator><creator>WALKER, P. A</creator><creator>ECCLESTON, J. F</creator><creator>NURMAHOMED, K</creator><creator>OWEN, D</creator><creator>LAUE, E</creator><creator>GAMBLIN, S. J</creator><creator>SMERDON, S. J</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19970814</creationdate><title>Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP</title><author>RITTINGER, K ; WALKER, P. A ; ECCLESTON, J. F ; NURMAHOMED, K ; OWEN, D ; LAUE, E ; GAMBLIN, S. J ; SMERDON, S. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-988da33412b15fa276f8d309e28e602934723512097c618ce7b3853284af39ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Arginine - chemistry</topic><topic>Binding and carrier proteins</topic><topic>Biological and medical sciences</topic><topic>cdc42 GTP-Binding Protein</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Chemical reactions</topic><topic>Crystalline structure</topic><topic>Crystallography, X-Ray</topic><topic>Enzyme Activation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>GTP-Binding Proteins - chemistry</topic><topic>GTPase-Activating Proteins</topic><topic>Guanosine Triphosphate - analogs & derivatives</topic><topic>Guanosine Triphosphate - chemistry</topic><topic>Hydrolysis</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular biophysics</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Structure in molecular biology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RITTINGER, K</creatorcontrib><creatorcontrib>WALKER, P. A</creatorcontrib><creatorcontrib>ECCLESTON, J. F</creatorcontrib><creatorcontrib>NURMAHOMED, K</creatorcontrib><creatorcontrib>OWEN, D</creatorcontrib><creatorcontrib>LAUE, E</creatorcontrib><creatorcontrib>GAMBLIN, S. J</creatorcontrib><creatorcontrib>SMERDON, S. J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RITTINGER, K</au><au>WALKER, P. A</au><au>ECCLESTON, J. F</au><au>NURMAHOMED, K</au><au>OWEN, D</au><au>LAUE, E</au><au>GAMBLIN, S. J</au><au>SMERDON, S. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>1997-08-14</date><risdate>1997</risdate><volume>388</volume><issue>6643</issue><spage>693</spage><epage>697</epage><pages>693-697</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Small G proteins transduce signals from plasma-membrane receptors to control a wide range of cellular functions. These proteins are clustered into distinct families but all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of G proteins, which includes Cdc42Hs, activate effectors involved in the regulation of cytoskeleton formation, cell proliferation and the JNK signalling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GTPase-activating proteins (GAPs) that enhance the rate of GTP hydrolysis by up to 10(5) times. We report here the crystal structure of Cdc42Hs, with the non-hydrolysable GTP analogue GMPPNP, in complex with the GAP domain of p50rhoGAP at 2.7A resolution. In the complex Cdc42Hs interacts, mainly through its switch I and II regions, with a shallow pocket on rhoGAP which is lined with conserved residues. Arg 85 of rhoGAP interacts with the P-loop of Cdc42Hs, but from biochemical data and by analogy with the G-protein subunit G(i alpha1), we propose that it adopts a different conformation during the catalytic cycle which enables it to stabilize the transition state of the GTP-hydrolysis reaction.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>9262406</pmid><doi>10.1038/41805</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1997-08, Vol.388 (6643), p.693-697 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_79207855 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | Analytical, structural and metabolic biochemistry Arginine - chemistry Binding and carrier proteins Biological and medical sciences cdc42 GTP-Binding Protein Cell Cycle Proteins - chemistry Chemical reactions Crystalline structure Crystallography, X-Ray Enzyme Activation Fundamental and applied biological sciences. Psychology GTP Phosphohydrolases - metabolism GTP-Binding Proteins - chemistry GTPase-Activating Proteins Guanosine Triphosphate - analogs & derivatives Guanosine Triphosphate - chemistry Hydrolysis Models, Molecular Molecular biology Molecular biophysics Protein Conformation Proteins Structure in molecular biology Studies |
title | Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20a%20small%20G%20protein%20in%20complex%20with%20the%20GTPase-activating%20protein%20rhoGAP&rft.jtitle=Nature%20(London)&rft.au=RITTINGER,%20K&rft.date=1997-08-14&rft.volume=388&rft.issue=6643&rft.spage=693&rft.epage=697&rft.pages=693-697&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/41805&rft_dat=%3Cproquest_cross%3E79207855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204487436&rft_id=info:pmid/9262406&rfr_iscdi=true |