Molecular Mechanism and Functional Significance of the MinK Control of the KvLQT1 Channel Activity

The very slowly activating delayed rectifier K+ channel IKs is essential for controlling the repolarization phase of cardiac action potentials and K+ homeostasis in the inner ear. The IKschannel is formed via the assembly of two transmembrane proteins, KvLQT1 and MinK. Mutations in KvLQT1 are associ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1997-07, Vol.272 (27), p.16713-16716
Hauptverfasser: Romey, Georges, Attali, Bernard, Chouabe, Christophe, Abitbol, Ilane, Guillemare, Eric, Barhanin, Jacques, Lazdunski, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16716
container_issue 27
container_start_page 16713
container_title The Journal of biological chemistry
container_volume 272
creator Romey, Georges
Attali, Bernard
Chouabe, Christophe
Abitbol, Ilane
Guillemare, Eric
Barhanin, Jacques
Lazdunski, Michel
description The very slowly activating delayed rectifier K+ channel IKs is essential for controlling the repolarization phase of cardiac action potentials and K+ homeostasis in the inner ear. The IKschannel is formed via the assembly of two transmembrane proteins, KvLQT1 and MinK. Mutations in KvLQT1 are associated with a long QT syndrome that causes syncope and sudden death and also with deafness. Here, we show a new mode of association between ion channel forming subunits in that the cytoplasmic C-terminal end of MinK interacts directly with the pore region of KvLQT1. This interaction reduces KvLQT1 channel conductance from 7.6 to 0.58 picosiemens. However, because MinK also reveals a large number of previously silent KvLQT1 channels (× 60), the overall effect is a large increase (× 4) in the macroscopic K+ current. Conformational changes associated with the KvLQT1/MinK association create very slow and complex activation kinetics without much alteration in the deactivation process. Changes induced by MinK have an essential regulatory role in the development of this K+ channel activity upon repetitive electrical stimulation with a particular interest in tachycardia.
doi_str_mv 10.1074/jbc.272.27.16713
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79091169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818392792</els_id><sourcerecordid>79091169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-4c4ec75fa844e9c1fff5106fad13bfd1699ce9144c90fc156350f2aa3abfe1c03</originalsourceid><addsrcrecordid>eNp1kMGL1DAUh4Mo67h69yLkIN465rVpO_G2DLsqO4OIK3gL6evLNkubrEk7sv-90Rk9CAYegbzf7yN8jL0EsQbRyrd3Ha7LtsyzhqaF6hFbgdhURVXDt8dsJUQJhSrrzVP2LKU7kY9UcMbOVClAtWLFun0YCZfRRL4nHIx3aeLG9_xq8Ti74M3Iv7hb76xD45F4sHweiO-dv-bb4OcYxj9v14fd5xvg20zxNPKL3D-4-eE5e2LNmOjF6T5nX68ub7Yfit2n9x-3F7sCJTRzIVEStrU1GylJIVhraxCNNT1Une2hUQpJgZSohEWom6oWtjSmMp0lQFGdszdH7n0M3xdKs55cQhpH4yksSbdKKMiYHBTHIMaQUiSr76ObTHzQIPQvrTpr1VlrHv1ba668OrGXbqL-b-HkMe9fH_eDux1-uEi6cwEHmv7FvDvGKHs4OIo6oaOstc8VnHUf3P__8BOoZ5MS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79091169</pqid></control><display><type>article</type><title>Molecular Mechanism and Functional Significance of the MinK Control of the KvLQT1 Channel Activity</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Romey, Georges ; Attali, Bernard ; Chouabe, Christophe ; Abitbol, Ilane ; Guillemare, Eric ; Barhanin, Jacques ; Lazdunski, Michel</creator><creatorcontrib>Romey, Georges ; Attali, Bernard ; Chouabe, Christophe ; Abitbol, Ilane ; Guillemare, Eric ; Barhanin, Jacques ; Lazdunski, Michel</creatorcontrib><description>The very slowly activating delayed rectifier K+ channel IKs is essential for controlling the repolarization phase of cardiac action potentials and K+ homeostasis in the inner ear. The IKschannel is formed via the assembly of two transmembrane proteins, KvLQT1 and MinK. Mutations in KvLQT1 are associated with a long QT syndrome that causes syncope and sudden death and also with deafness. Here, we show a new mode of association between ion channel forming subunits in that the cytoplasmic C-terminal end of MinK interacts directly with the pore region of KvLQT1. This interaction reduces KvLQT1 channel conductance from 7.6 to 0.58 picosiemens. However, because MinK also reveals a large number of previously silent KvLQT1 channels (× 60), the overall effect is a large increase (× 4) in the macroscopic K+ current. Conformational changes associated with the KvLQT1/MinK association create very slow and complex activation kinetics without much alteration in the deactivation process. Changes induced by MinK have an essential regulatory role in the development of this K+ channel activity upon repetitive electrical stimulation with a particular interest in tachycardia.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.272.27.16713</identifier><identifier>PMID: 9201970</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials ; Animals ; COS Cells ; KCNQ Potassium Channels ; KCNQ1 Potassium Channel ; Kinetics ; Models, Molecular ; Myocardium - metabolism ; Potassium Channels - genetics ; Potassium Channels - metabolism ; Potassium Channels, Voltage-Gated ; Protein Binding ; Transfection</subject><ispartof>The Journal of biological chemistry, 1997-07, Vol.272 (27), p.16713-16716</ispartof><rights>1997 © 1997 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-4c4ec75fa844e9c1fff5106fad13bfd1699ce9144c90fc156350f2aa3abfe1c03</citedby><cites>FETCH-LOGICAL-c416t-4c4ec75fa844e9c1fff5106fad13bfd1699ce9144c90fc156350f2aa3abfe1c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9201970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romey, Georges</creatorcontrib><creatorcontrib>Attali, Bernard</creatorcontrib><creatorcontrib>Chouabe, Christophe</creatorcontrib><creatorcontrib>Abitbol, Ilane</creatorcontrib><creatorcontrib>Guillemare, Eric</creatorcontrib><creatorcontrib>Barhanin, Jacques</creatorcontrib><creatorcontrib>Lazdunski, Michel</creatorcontrib><title>Molecular Mechanism and Functional Significance of the MinK Control of the KvLQT1 Channel Activity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The very slowly activating delayed rectifier K+ channel IKs is essential for controlling the repolarization phase of cardiac action potentials and K+ homeostasis in the inner ear. The IKschannel is formed via the assembly of two transmembrane proteins, KvLQT1 and MinK. Mutations in KvLQT1 are associated with a long QT syndrome that causes syncope and sudden death and also with deafness. Here, we show a new mode of association between ion channel forming subunits in that the cytoplasmic C-terminal end of MinK interacts directly with the pore region of KvLQT1. This interaction reduces KvLQT1 channel conductance from 7.6 to 0.58 picosiemens. However, because MinK also reveals a large number of previously silent KvLQT1 channels (× 60), the overall effect is a large increase (× 4) in the macroscopic K+ current. Conformational changes associated with the KvLQT1/MinK association create very slow and complex activation kinetics without much alteration in the deactivation process. Changes induced by MinK have an essential regulatory role in the development of this K+ channel activity upon repetitive electrical stimulation with a particular interest in tachycardia.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>COS Cells</subject><subject>KCNQ Potassium Channels</subject><subject>KCNQ1 Potassium Channel</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Myocardium - metabolism</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels, Voltage-Gated</subject><subject>Protein Binding</subject><subject>Transfection</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMGL1DAUh4Mo67h69yLkIN465rVpO_G2DLsqO4OIK3gL6evLNkubrEk7sv-90Rk9CAYegbzf7yN8jL0EsQbRyrd3Ha7LtsyzhqaF6hFbgdhURVXDt8dsJUQJhSrrzVP2LKU7kY9UcMbOVClAtWLFun0YCZfRRL4nHIx3aeLG9_xq8Ti74M3Iv7hb76xD45F4sHweiO-dv-bb4OcYxj9v14fd5xvg20zxNPKL3D-4-eE5e2LNmOjF6T5nX68ub7Yfit2n9x-3F7sCJTRzIVEStrU1GylJIVhraxCNNT1Une2hUQpJgZSohEWom6oWtjSmMp0lQFGdszdH7n0M3xdKs55cQhpH4yksSbdKKMiYHBTHIMaQUiSr76ObTHzQIPQvrTpr1VlrHv1ba668OrGXbqL-b-HkMe9fH_eDux1-uEi6cwEHmv7FvDvGKHs4OIo6oaOstc8VnHUf3P__8BOoZ5MS</recordid><startdate>19970704</startdate><enddate>19970704</enddate><creator>Romey, Georges</creator><creator>Attali, Bernard</creator><creator>Chouabe, Christophe</creator><creator>Abitbol, Ilane</creator><creator>Guillemare, Eric</creator><creator>Barhanin, Jacques</creator><creator>Lazdunski, Michel</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19970704</creationdate><title>Molecular Mechanism and Functional Significance of the MinK Control of the KvLQT1 Channel Activity</title><author>Romey, Georges ; Attali, Bernard ; Chouabe, Christophe ; Abitbol, Ilane ; Guillemare, Eric ; Barhanin, Jacques ; Lazdunski, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-4c4ec75fa844e9c1fff5106fad13bfd1699ce9144c90fc156350f2aa3abfe1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>COS Cells</topic><topic>KCNQ Potassium Channels</topic><topic>KCNQ1 Potassium Channel</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Myocardium - metabolism</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels, Voltage-Gated</topic><topic>Protein Binding</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romey, Georges</creatorcontrib><creatorcontrib>Attali, Bernard</creatorcontrib><creatorcontrib>Chouabe, Christophe</creatorcontrib><creatorcontrib>Abitbol, Ilane</creatorcontrib><creatorcontrib>Guillemare, Eric</creatorcontrib><creatorcontrib>Barhanin, Jacques</creatorcontrib><creatorcontrib>Lazdunski, Michel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romey, Georges</au><au>Attali, Bernard</au><au>Chouabe, Christophe</au><au>Abitbol, Ilane</au><au>Guillemare, Eric</au><au>Barhanin, Jacques</au><au>Lazdunski, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Mechanism and Functional Significance of the MinK Control of the KvLQT1 Channel Activity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1997-07-04</date><risdate>1997</risdate><volume>272</volume><issue>27</issue><spage>16713</spage><epage>16716</epage><pages>16713-16716</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The very slowly activating delayed rectifier K+ channel IKs is essential for controlling the repolarization phase of cardiac action potentials and K+ homeostasis in the inner ear. The IKschannel is formed via the assembly of two transmembrane proteins, KvLQT1 and MinK. Mutations in KvLQT1 are associated with a long QT syndrome that causes syncope and sudden death and also with deafness. Here, we show a new mode of association between ion channel forming subunits in that the cytoplasmic C-terminal end of MinK interacts directly with the pore region of KvLQT1. This interaction reduces KvLQT1 channel conductance from 7.6 to 0.58 picosiemens. However, because MinK also reveals a large number of previously silent KvLQT1 channels (× 60), the overall effect is a large increase (× 4) in the macroscopic K+ current. Conformational changes associated with the KvLQT1/MinK association create very slow and complex activation kinetics without much alteration in the deactivation process. Changes induced by MinK have an essential regulatory role in the development of this K+ channel activity upon repetitive electrical stimulation with a particular interest in tachycardia.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9201970</pmid><doi>10.1074/jbc.272.27.16713</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1997-07, Vol.272 (27), p.16713-16716
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_79091169
source MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Action Potentials
Animals
COS Cells
KCNQ Potassium Channels
KCNQ1 Potassium Channel
Kinetics
Models, Molecular
Myocardium - metabolism
Potassium Channels - genetics
Potassium Channels - metabolism
Potassium Channels, Voltage-Gated
Protein Binding
Transfection
title Molecular Mechanism and Functional Significance of the MinK Control of the KvLQT1 Channel Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Mechanism%20and%20Functional%20Significance%20of%20the%20MinK%20Control%20of%20the%20KvLQT1%20Channel%20Activity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Romey,%20Georges&rft.date=1997-07-04&rft.volume=272&rft.issue=27&rft.spage=16713&rft.epage=16716&rft.pages=16713-16716&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.272.27.16713&rft_dat=%3Cproquest_cross%3E79091169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79091169&rft_id=info:pmid/9201970&rft_els_id=S0021925818392792&rfr_iscdi=true