Characterization of normal brain tissue using seven calculated MRI parameters and a statistical analysis system

A statistical analysis system for classifying normal brain tissue has been applied to the analysis of MRI scans on 45 volunteers. The Bayes Maximum Likelihood method was used to achieve a discrimination accuracy of 84% for 13 tissue types among three age group sets, with classification accuracies fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 1989-07, Vol.11 (1), p.22-34
Hauptverfasser: Hyman, Timothy J., Levy, George C., Kurland, Robert J., Shoop, Jon D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 22
container_title Magnetic resonance in medicine
container_volume 11
creator Hyman, Timothy J.
Levy, George C.
Kurland, Robert J.
Shoop, Jon D.
description A statistical analysis system for classifying normal brain tissue has been applied to the analysis of MRI scans on 45 volunteers. The Bayes Maximum Likelihood method was used to achieve a discrimination accuracy of 84% for 13 tissue types among three age group sets, with classification accuracies for individual regions ranging from 50 to 100%. In order to attain this level of discrimination a set of seven derived relaxation‐type parameters was used to categorize the tissue types. Values for these experimentally estimated parameters were derived from the MRI intensities of eight images in the following pulse sequences: (1) a Carr‐Purcell‐Meiboom‐Gill (CPMG) four‐echo train, (2)a single‐echo inversion recovery, and (3) three single‐echo sequences with varying repetition times, TR, and echo delays, TE. The T2 values derived from ratios of single‐echo intensities showed better discrimination power than those from the four‐echo CPMG train. The general precision of the seven estimated parameters was excellent, with percentage stan‐ dard deviations ranging from 4 to 18% for the various regions studied. The tissue discrimination achieved by use of just three relaxation parameters, T1, T2, and proton density, calculated from intensities of images from a four‐echo sequence, an inversion recovery sequence, and a short TR single‐echo sequence, was not as good, being only 55%. © 1989 Academic Press. Inc.
doi_str_mv 10.1002/mrm.1910110103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79086523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79086523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3233-6d507261c82abe837f5a5bb436d87dd517caf89915dc839f5e64cd7f5ed339773</originalsourceid><addsrcrecordid>eNqFkF1rFDEUhoModbt6652QG72bbT4mk8mlrLoWuhaKH9CbcCbJaHQ-1pwZ6_rrTdmlxatCIJDzvs8JDyEvOFtxxsRZn_oVN5zxfJh8RBZcCVEIZcrHZMF0yQrJTfmUnCL-YIwZo8sTciJ0qRUvF2Rcf4cEbgop_oUpjgMdWzqMqYeONgniQKeIOAc6Yxy-UQy_w0AddG7uYAqebq_O6S4T-pARSGHwFChOGYVTzLn8At0eI1Lc4xT6Z-RJCx2G58d7ST6_f_dp_aG4uNycr99cFE4KKYvKK6ZFxV0toAm11K0C1TSlrHytvVdcO2hrY7jyrpamVaEqnc-p4KU0WssleX3g7tL4aw442T6iC10HQxhntNqwulJ51ZKsDkGXRsQUWrtLsYe0t5zZW8M2G7b3hnPh5ZE8N33wd_Gj0jx_dZwDZgFtgsFFvKcaLQSvec6ZQ-4mdmH_wFa7vdr-94fi0M2Ww5-7LqSfttJSK_v148a-3ZjrL6W4tkb-A8NwpSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79086523</pqid></control><display><type>article</type><title>Characterization of normal brain tissue using seven calculated MRI parameters and a statistical analysis system</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hyman, Timothy J. ; Levy, George C. ; Kurland, Robert J. ; Shoop, Jon D.</creator><creatorcontrib>Hyman, Timothy J. ; Levy, George C. ; Kurland, Robert J. ; Shoop, Jon D.</creatorcontrib><description>A statistical analysis system for classifying normal brain tissue has been applied to the analysis of MRI scans on 45 volunteers. The Bayes Maximum Likelihood method was used to achieve a discrimination accuracy of 84% for 13 tissue types among three age group sets, with classification accuracies for individual regions ranging from 50 to 100%. In order to attain this level of discrimination a set of seven derived relaxation‐type parameters was used to categorize the tissue types. Values for these experimentally estimated parameters were derived from the MRI intensities of eight images in the following pulse sequences: (1) a Carr‐Purcell‐Meiboom‐Gill (CPMG) four‐echo train, (2)a single‐echo inversion recovery, and (3) three single‐echo sequences with varying repetition times, TR, and echo delays, TE. The T2 values derived from ratios of single‐echo intensities showed better discrimination power than those from the four‐echo CPMG train. The general precision of the seven estimated parameters was excellent, with percentage stan‐ dard deviations ranging from 4 to 18% for the various regions studied. The tissue discrimination achieved by use of just three relaxation parameters, T1, T2, and proton density, calculated from intensities of images from a four‐echo sequence, an inversion recovery sequence, and a short TR single‐echo sequence, was not as good, being only 55%. © 1989 Academic Press. Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.1910110103</identifier><identifier>PMID: 2747514</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Baltimore: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Biological and medical sciences ; Brain - anatomy &amp; histology ; Data Interpretation, Statistical ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging - methods ; Mathematical Computing ; Medical sciences ; Middle Aged ; Nervous system ; Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><ispartof>Magnetic resonance in medicine, 1989-07, Vol.11 (1), p.22-34</ispartof><rights>Copyright © 1989 Wiley‐Liss, Inc., A Wiley Company</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3233-6d507261c82abe837f5a5bb436d87dd517caf89915dc839f5e64cd7f5ed339773</citedby><cites>FETCH-LOGICAL-c3233-6d507261c82abe837f5a5bb436d87dd517caf89915dc839f5e64cd7f5ed339773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.1910110103$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.1910110103$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19722181$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2747514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyman, Timothy J.</creatorcontrib><creatorcontrib>Levy, George C.</creatorcontrib><creatorcontrib>Kurland, Robert J.</creatorcontrib><creatorcontrib>Shoop, Jon D.</creatorcontrib><title>Characterization of normal brain tissue using seven calculated MRI parameters and a statistical analysis system</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>A statistical analysis system for classifying normal brain tissue has been applied to the analysis of MRI scans on 45 volunteers. The Bayes Maximum Likelihood method was used to achieve a discrimination accuracy of 84% for 13 tissue types among three age group sets, with classification accuracies for individual regions ranging from 50 to 100%. In order to attain this level of discrimination a set of seven derived relaxation‐type parameters was used to categorize the tissue types. Values for these experimentally estimated parameters were derived from the MRI intensities of eight images in the following pulse sequences: (1) a Carr‐Purcell‐Meiboom‐Gill (CPMG) four‐echo train, (2)a single‐echo inversion recovery, and (3) three single‐echo sequences with varying repetition times, TR, and echo delays, TE. The T2 values derived from ratios of single‐echo intensities showed better discrimination power than those from the four‐echo CPMG train. The general precision of the seven estimated parameters was excellent, with percentage stan‐ dard deviations ranging from 4 to 18% for the various regions studied. The tissue discrimination achieved by use of just three relaxation parameters, T1, T2, and proton density, calculated from intensities of images from a four‐echo sequence, an inversion recovery sequence, and a short TR single‐echo sequence, was not as good, being only 55%. © 1989 Academic Press. Inc.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy &amp; histology</subject><subject>Data Interpretation, Statistical</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical Computing</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Nervous system</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1rFDEUhoModbt6652QG72bbT4mk8mlrLoWuhaKH9CbcCbJaHQ-1pwZ6_rrTdmlxatCIJDzvs8JDyEvOFtxxsRZn_oVN5zxfJh8RBZcCVEIZcrHZMF0yQrJTfmUnCL-YIwZo8sTciJ0qRUvF2Rcf4cEbgop_oUpjgMdWzqMqYeONgniQKeIOAc6Yxy-UQy_w0AddG7uYAqebq_O6S4T-pARSGHwFChOGYVTzLn8At0eI1Lc4xT6Z-RJCx2G58d7ST6_f_dp_aG4uNycr99cFE4KKYvKK6ZFxV0toAm11K0C1TSlrHytvVdcO2hrY7jyrpamVaEqnc-p4KU0WssleX3g7tL4aw442T6iC10HQxhntNqwulJ51ZKsDkGXRsQUWrtLsYe0t5zZW8M2G7b3hnPh5ZE8N33wd_Gj0jx_dZwDZgFtgsFFvKcaLQSvec6ZQ-4mdmH_wFa7vdr-94fi0M2Ww5-7LqSfttJSK_v148a-3ZjrL6W4tkb-A8NwpSk</recordid><startdate>198907</startdate><enddate>198907</enddate><creator>Hyman, Timothy J.</creator><creator>Levy, George C.</creator><creator>Kurland, Robert J.</creator><creator>Shoop, Jon D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Williams &amp; Wilkins</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198907</creationdate><title>Characterization of normal brain tissue using seven calculated MRI parameters and a statistical analysis system</title><author>Hyman, Timothy J. ; Levy, George C. ; Kurland, Robert J. ; Shoop, Jon D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3233-6d507261c82abe837f5a5bb436d87dd517caf89915dc839f5e64cd7f5ed339773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy &amp; histology</topic><topic>Data Interpretation, Statistical</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical Computing</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Nervous system</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyman, Timothy J.</creatorcontrib><creatorcontrib>Levy, George C.</creatorcontrib><creatorcontrib>Kurland, Robert J.</creatorcontrib><creatorcontrib>Shoop, Jon D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyman, Timothy J.</au><au>Levy, George C.</au><au>Kurland, Robert J.</au><au>Shoop, Jon D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of normal brain tissue using seven calculated MRI parameters and a statistical analysis system</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>1989-07</date><risdate>1989</risdate><volume>11</volume><issue>1</issue><spage>22</spage><epage>34</epage><pages>22-34</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>A statistical analysis system for classifying normal brain tissue has been applied to the analysis of MRI scans on 45 volunteers. The Bayes Maximum Likelihood method was used to achieve a discrimination accuracy of 84% for 13 tissue types among three age group sets, with classification accuracies for individual regions ranging from 50 to 100%. In order to attain this level of discrimination a set of seven derived relaxation‐type parameters was used to categorize the tissue types. Values for these experimentally estimated parameters were derived from the MRI intensities of eight images in the following pulse sequences: (1) a Carr‐Purcell‐Meiboom‐Gill (CPMG) four‐echo train, (2)a single‐echo inversion recovery, and (3) three single‐echo sequences with varying repetition times, TR, and echo delays, TE. The T2 values derived from ratios of single‐echo intensities showed better discrimination power than those from the four‐echo CPMG train. The general precision of the seven estimated parameters was excellent, with percentage stan‐ dard deviations ranging from 4 to 18% for the various regions studied. The tissue discrimination achieved by use of just three relaxation parameters, T1, T2, and proton density, calculated from intensities of images from a four‐echo sequence, an inversion recovery sequence, and a short TR single‐echo sequence, was not as good, being only 55%. © 1989 Academic Press. Inc.</abstract><cop>Baltimore</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>2747514</pmid><doi>10.1002/mrm.1910110103</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 1989-07, Vol.11 (1), p.22-34
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_79086523
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adult
Biological and medical sciences
Brain - anatomy & histology
Data Interpretation, Statistical
Humans
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Mathematical Computing
Medical sciences
Middle Aged
Nervous system
Radiodiagnosis. Nmr imagery. Nmr spectrometry
title Characterization of normal brain tissue using seven calculated MRI parameters and a statistical analysis system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T09%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20normal%20brain%20tissue%20using%20seven%20calculated%20MRI%20parameters%20and%20a%20statistical%20analysis%20system&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Hyman,%20Timothy%20J.&rft.date=1989-07&rft.volume=11&rft.issue=1&rft.spage=22&rft.epage=34&rft.pages=22-34&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.1910110103&rft_dat=%3Cproquest_cross%3E79086523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79086523&rft_id=info:pmid/2747514&rfr_iscdi=true