The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression

The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current genetics 1997-05, Vol.31 (5), p.380-395
Hauptverfasser: Paquin, B, Laforest, M J, Forget, L, Roewer, I, Wang, Z, Longcore, J, Lang, B F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 5
container_start_page 380
container_title Current genetics
container_volume 31
creator Paquin, B
Laforest, M J
Forget, L
Roewer, I
Wang, Z
Longcore, J
Lang, B F
description The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene expression in fungal mitochondria. By using our new sequence data for evolutionary studies, we were able to construct phylogenetic trees that provide further solid evidence that animals and fungi share a common ancestor to the exclusion of chlorophytes and protists. With a database comprising multiple mitochondrial gene sequences, the level of support for our mitochondrial phylogenies is unprecedented, in comparison to trees inferred with nuclear ribosomal RNA sequences. We also found several new molecular features in the mitochondrial genomes of lower fungi, including: (1) tRNA editing, which is the same type as that found in the mitochondria of the amoeboid protozoan Acanthamoeba castellanii; (2) two novel types of putative mobile DNA elements, one encoding a site-specific endonuclease that confers mobility on the element, and the other constituting a class of highly compact, structured elements; and (3) a large number of introns, which provide insights into intron origins and evolution. Here, we present an overview of these results, and discuss examples of the diversity of structures found in the fungal mitochondrial genome.
doi_str_mv 10.1007/s002940050220
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79027282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16052741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8e9cab22a4dbc55da88a9efd573ce86c0db1c1f1d7b28839cd9f1f60259ddaee3</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxYMotVaPHoWcvK1Okv1IvEnxCwpe6nnJJpN2y-6mJrui_71bWgQvehpm-L3H8B4hlwxuGEBxGwG4SgEy4ByOyJSlgiegpDgmU2AFTyRIcUrOYtwAMC5VMSETxXLOQE1Js1wjdUO30g1t696bte9sqMdthZ1vkW6D36Dp7yh--Gboa99R7_5SRKo7S_s11mF3QYqf24AxjspzcuJ0E_HiMGfk7fFhOX9OFq9PL_P7RWIEU30iURldca5TW5kss1pKrdDZrBAGZW7AVswwx2xRcSmFMlY55nLgmbJWI4oZud77js-_Dxj7sq2jwabRHfohloUCXnDJ_wVZDhkvUjaCyR40wccY0JXbULc6fJUMyl0N5a8aRv7qYDxULdof-pC7-Aa7PYVN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16052741</pqid></control><display><type>article</type><title>The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Paquin, B ; Laforest, M J ; Forget, L ; Roewer, I ; Wang, Z ; Longcore, J ; Lang, B F</creator><creatorcontrib>Paquin, B ; Laforest, M J ; Forget, L ; Roewer, I ; Wang, Z ; Longcore, J ; Lang, B F</creatorcontrib><description>The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene expression in fungal mitochondria. By using our new sequence data for evolutionary studies, we were able to construct phylogenetic trees that provide further solid evidence that animals and fungi share a common ancestor to the exclusion of chlorophytes and protists. With a database comprising multiple mitochondrial gene sequences, the level of support for our mitochondrial phylogenies is unprecedented, in comparison to trees inferred with nuclear ribosomal RNA sequences. We also found several new molecular features in the mitochondrial genomes of lower fungi, including: (1) tRNA editing, which is the same type as that found in the mitochondria of the amoeboid protozoan Acanthamoeba castellanii; (2) two novel types of putative mobile DNA elements, one encoding a site-specific endonuclease that confers mobility on the element, and the other constituting a class of highly compact, structured elements; and (3) a large number of introns, which provide insights into intron origins and evolution. Here, we present an overview of these results, and discuss examples of the diversity of structures found in the fungal mitochondrial genome.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s002940050220</identifier><identifier>PMID: 9162109</identifier><language>eng</language><publisher>United States</publisher><subject>Acanthamoeba castellanii ; Base Sequence ; Biological Evolution ; DNA, Mitochondrial - genetics ; Gene Expression Regulation, Fungal - physiology ; Genetic Code ; Genome, Fungal ; Introns ; Mitochondria - genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phylogeny ; Ribosomal Proteins - genetics ; RNA Editing ; Space life sciences</subject><ispartof>Current genetics, 1997-05, Vol.31 (5), p.380-395</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8e9cab22a4dbc55da88a9efd573ce86c0db1c1f1d7b28839cd9f1f60259ddaee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9162109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paquin, B</creatorcontrib><creatorcontrib>Laforest, M J</creatorcontrib><creatorcontrib>Forget, L</creatorcontrib><creatorcontrib>Roewer, I</creatorcontrib><creatorcontrib>Wang, Z</creatorcontrib><creatorcontrib>Longcore, J</creatorcontrib><creatorcontrib>Lang, B F</creatorcontrib><title>The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><description>The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene expression in fungal mitochondria. By using our new sequence data for evolutionary studies, we were able to construct phylogenetic trees that provide further solid evidence that animals and fungi share a common ancestor to the exclusion of chlorophytes and protists. With a database comprising multiple mitochondrial gene sequences, the level of support for our mitochondrial phylogenies is unprecedented, in comparison to trees inferred with nuclear ribosomal RNA sequences. We also found several new molecular features in the mitochondrial genomes of lower fungi, including: (1) tRNA editing, which is the same type as that found in the mitochondria of the amoeboid protozoan Acanthamoeba castellanii; (2) two novel types of putative mobile DNA elements, one encoding a site-specific endonuclease that confers mobility on the element, and the other constituting a class of highly compact, structured elements; and (3) a large number of introns, which provide insights into intron origins and evolution. Here, we present an overview of these results, and discuss examples of the diversity of structures found in the fungal mitochondrial genome.</description><subject>Acanthamoeba castellanii</subject><subject>Base Sequence</subject><subject>Biological Evolution</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Gene Expression Regulation, Fungal - physiology</subject><subject>Genetic Code</subject><subject>Genome, Fungal</subject><subject>Introns</subject><subject>Mitochondria - genetics</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Phylogeny</subject><subject>Ribosomal Proteins - genetics</subject><subject>RNA Editing</subject><subject>Space life sciences</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1LAzEQxYMotVaPHoWcvK1Okv1IvEnxCwpe6nnJJpN2y-6mJrui_71bWgQvehpm-L3H8B4hlwxuGEBxGwG4SgEy4ByOyJSlgiegpDgmU2AFTyRIcUrOYtwAMC5VMSETxXLOQE1Js1wjdUO30g1t696bte9sqMdthZ1vkW6D36Dp7yh--Gboa99R7_5SRKo7S_s11mF3QYqf24AxjspzcuJ0E_HiMGfk7fFhOX9OFq9PL_P7RWIEU30iURldca5TW5kss1pKrdDZrBAGZW7AVswwx2xRcSmFMlY55nLgmbJWI4oZud77js-_Dxj7sq2jwabRHfohloUCXnDJ_wVZDhkvUjaCyR40wccY0JXbULc6fJUMyl0N5a8aRv7qYDxULdof-pC7-Aa7PYVN</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>Paquin, B</creator><creator>Laforest, M J</creator><creator>Forget, L</creator><creator>Roewer, I</creator><creator>Wang, Z</creator><creator>Longcore, J</creator><creator>Lang, B F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19970501</creationdate><title>The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression</title><author>Paquin, B ; Laforest, M J ; Forget, L ; Roewer, I ; Wang, Z ; Longcore, J ; Lang, B F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8e9cab22a4dbc55da88a9efd573ce86c0db1c1f1d7b28839cd9f1f60259ddaee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Acanthamoeba castellanii</topic><topic>Base Sequence</topic><topic>Biological Evolution</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Gene Expression Regulation, Fungal - physiology</topic><topic>Genetic Code</topic><topic>Genome, Fungal</topic><topic>Introns</topic><topic>Mitochondria - genetics</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Phylogeny</topic><topic>Ribosomal Proteins - genetics</topic><topic>RNA Editing</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paquin, B</creatorcontrib><creatorcontrib>Laforest, M J</creatorcontrib><creatorcontrib>Forget, L</creatorcontrib><creatorcontrib>Roewer, I</creatorcontrib><creatorcontrib>Wang, Z</creatorcontrib><creatorcontrib>Longcore, J</creatorcontrib><creatorcontrib>Lang, B F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paquin, B</au><au>Laforest, M J</au><au>Forget, L</au><au>Roewer, I</au><au>Wang, Z</au><au>Longcore, J</au><au>Lang, B F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression</atitle><jtitle>Current genetics</jtitle><addtitle>Curr Genet</addtitle><date>1997-05-01</date><risdate>1997</risdate><volume>31</volume><issue>5</issue><spage>380</spage><epage>395</epage><pages>380-395</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene expression in fungal mitochondria. By using our new sequence data for evolutionary studies, we were able to construct phylogenetic trees that provide further solid evidence that animals and fungi share a common ancestor to the exclusion of chlorophytes and protists. With a database comprising multiple mitochondrial gene sequences, the level of support for our mitochondrial phylogenies is unprecedented, in comparison to trees inferred with nuclear ribosomal RNA sequences. We also found several new molecular features in the mitochondrial genomes of lower fungi, including: (1) tRNA editing, which is the same type as that found in the mitochondria of the amoeboid protozoan Acanthamoeba castellanii; (2) two novel types of putative mobile DNA elements, one encoding a site-specific endonuclease that confers mobility on the element, and the other constituting a class of highly compact, structured elements; and (3) a large number of introns, which provide insights into intron origins and evolution. Here, we present an overview of these results, and discuss examples of the diversity of structures found in the fungal mitochondrial genome.</abstract><cop>United States</cop><pmid>9162109</pmid><doi>10.1007/s002940050220</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0172-8083
ispartof Current genetics, 1997-05, Vol.31 (5), p.380-395
issn 0172-8083
1432-0983
language eng
recordid cdi_proquest_miscellaneous_79027282
source MEDLINE; SpringerLink (Online service)
subjects Acanthamoeba castellanii
Base Sequence
Biological Evolution
DNA, Mitochondrial - genetics
Gene Expression Regulation, Fungal - physiology
Genetic Code
Genome, Fungal
Introns
Mitochondria - genetics
Molecular Sequence Data
Nucleic Acid Conformation
Phylogeny
Ribosomal Proteins - genetics
RNA Editing
Space life sciences
title The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fungal%20mitochondrial%20genome%20project:%20evolution%20of%20fungal%20mitochondrial%20genomes%20and%20their%20gene%20expression&rft.jtitle=Current%20genetics&rft.au=Paquin,%20B&rft.date=1997-05-01&rft.volume=31&rft.issue=5&rft.spage=380&rft.epage=395&rft.pages=380-395&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s002940050220&rft_dat=%3Cproquest_cross%3E16052741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16052741&rft_id=info:pmid/9162109&rfr_iscdi=true