The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression
The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene exp...
Gespeichert in:
Veröffentlicht in: | Current genetics 1997-05, Vol.31 (5), p.380-395 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 395 |
---|---|
container_issue | 5 |
container_start_page | 380 |
container_title | Current genetics |
container_volume | 31 |
creator | Paquin, B Laforest, M J Forget, L Roewer, I Wang, Z Longcore, J Lang, B F |
description | The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene expression in fungal mitochondria. By using our new sequence data for evolutionary studies, we were able to construct phylogenetic trees that provide further solid evidence that animals and fungi share a common ancestor to the exclusion of chlorophytes and protists. With a database comprising multiple mitochondrial gene sequences, the level of support for our mitochondrial phylogenies is unprecedented, in comparison to trees inferred with nuclear ribosomal RNA sequences. We also found several new molecular features in the mitochondrial genomes of lower fungi, including: (1) tRNA editing, which is the same type as that found in the mitochondria of the amoeboid protozoan Acanthamoeba castellanii; (2) two novel types of putative mobile DNA elements, one encoding a site-specific endonuclease that confers mobility on the element, and the other constituting a class of highly compact, structured elements; and (3) a large number of introns, which provide insights into intron origins and evolution. Here, we present an overview of these results, and discuss examples of the diversity of structures found in the fungal mitochondrial genome. |
doi_str_mv | 10.1007/s002940050220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79027282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16052741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8e9cab22a4dbc55da88a9efd573ce86c0db1c1f1d7b28839cd9f1f60259ddaee3</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxYMotVaPHoWcvK1Okv1IvEnxCwpe6nnJJpN2y-6mJrui_71bWgQvehpm-L3H8B4hlwxuGEBxGwG4SgEy4ByOyJSlgiegpDgmU2AFTyRIcUrOYtwAMC5VMSETxXLOQE1Js1wjdUO30g1t696bte9sqMdthZ1vkW6D36Dp7yh--Gboa99R7_5SRKo7S_s11mF3QYqf24AxjspzcuJ0E_HiMGfk7fFhOX9OFq9PL_P7RWIEU30iURldca5TW5kss1pKrdDZrBAGZW7AVswwx2xRcSmFMlY55nLgmbJWI4oZud77js-_Dxj7sq2jwabRHfohloUCXnDJ_wVZDhkvUjaCyR40wccY0JXbULc6fJUMyl0N5a8aRv7qYDxULdof-pC7-Aa7PYVN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16052741</pqid></control><display><type>article</type><title>The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Paquin, B ; Laforest, M J ; Forget, L ; Roewer, I ; Wang, Z ; Longcore, J ; Lang, B F</creator><creatorcontrib>Paquin, B ; Laforest, M J ; Forget, L ; Roewer, I ; Wang, Z ; Longcore, J ; Lang, B F</creatorcontrib><description>The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene expression in fungal mitochondria. By using our new sequence data for evolutionary studies, we were able to construct phylogenetic trees that provide further solid evidence that animals and fungi share a common ancestor to the exclusion of chlorophytes and protists. With a database comprising multiple mitochondrial gene sequences, the level of support for our mitochondrial phylogenies is unprecedented, in comparison to trees inferred with nuclear ribosomal RNA sequences. We also found several new molecular features in the mitochondrial genomes of lower fungi, including: (1) tRNA editing, which is the same type as that found in the mitochondria of the amoeboid protozoan Acanthamoeba castellanii; (2) two novel types of putative mobile DNA elements, one encoding a site-specific endonuclease that confers mobility on the element, and the other constituting a class of highly compact, structured elements; and (3) a large number of introns, which provide insights into intron origins and evolution. Here, we present an overview of these results, and discuss examples of the diversity of structures found in the fungal mitochondrial genome.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s002940050220</identifier><identifier>PMID: 9162109</identifier><language>eng</language><publisher>United States</publisher><subject>Acanthamoeba castellanii ; Base Sequence ; Biological Evolution ; DNA, Mitochondrial - genetics ; Gene Expression Regulation, Fungal - physiology ; Genetic Code ; Genome, Fungal ; Introns ; Mitochondria - genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phylogeny ; Ribosomal Proteins - genetics ; RNA Editing ; Space life sciences</subject><ispartof>Current genetics, 1997-05, Vol.31 (5), p.380-395</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8e9cab22a4dbc55da88a9efd573ce86c0db1c1f1d7b28839cd9f1f60259ddaee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9162109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paquin, B</creatorcontrib><creatorcontrib>Laforest, M J</creatorcontrib><creatorcontrib>Forget, L</creatorcontrib><creatorcontrib>Roewer, I</creatorcontrib><creatorcontrib>Wang, Z</creatorcontrib><creatorcontrib>Longcore, J</creatorcontrib><creatorcontrib>Lang, B F</creatorcontrib><title>The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><description>The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene expression in fungal mitochondria. By using our new sequence data for evolutionary studies, we were able to construct phylogenetic trees that provide further solid evidence that animals and fungi share a common ancestor to the exclusion of chlorophytes and protists. With a database comprising multiple mitochondrial gene sequences, the level of support for our mitochondrial phylogenies is unprecedented, in comparison to trees inferred with nuclear ribosomal RNA sequences. We also found several new molecular features in the mitochondrial genomes of lower fungi, including: (1) tRNA editing, which is the same type as that found in the mitochondria of the amoeboid protozoan Acanthamoeba castellanii; (2) two novel types of putative mobile DNA elements, one encoding a site-specific endonuclease that confers mobility on the element, and the other constituting a class of highly compact, structured elements; and (3) a large number of introns, which provide insights into intron origins and evolution. Here, we present an overview of these results, and discuss examples of the diversity of structures found in the fungal mitochondrial genome.</description><subject>Acanthamoeba castellanii</subject><subject>Base Sequence</subject><subject>Biological Evolution</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Gene Expression Regulation, Fungal - physiology</subject><subject>Genetic Code</subject><subject>Genome, Fungal</subject><subject>Introns</subject><subject>Mitochondria - genetics</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Phylogeny</subject><subject>Ribosomal Proteins - genetics</subject><subject>RNA Editing</subject><subject>Space life sciences</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1LAzEQxYMotVaPHoWcvK1Okv1IvEnxCwpe6nnJJpN2y-6mJrui_71bWgQvehpm-L3H8B4hlwxuGEBxGwG4SgEy4ByOyJSlgiegpDgmU2AFTyRIcUrOYtwAMC5VMSETxXLOQE1Js1wjdUO30g1t696bte9sqMdthZ1vkW6D36Dp7yh--Gboa99R7_5SRKo7S_s11mF3QYqf24AxjspzcuJ0E_HiMGfk7fFhOX9OFq9PL_P7RWIEU30iURldca5TW5kss1pKrdDZrBAGZW7AVswwx2xRcSmFMlY55nLgmbJWI4oZud77js-_Dxj7sq2jwabRHfohloUCXnDJ_wVZDhkvUjaCyR40wccY0JXbULc6fJUMyl0N5a8aRv7qYDxULdof-pC7-Aa7PYVN</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>Paquin, B</creator><creator>Laforest, M J</creator><creator>Forget, L</creator><creator>Roewer, I</creator><creator>Wang, Z</creator><creator>Longcore, J</creator><creator>Lang, B F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19970501</creationdate><title>The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression</title><author>Paquin, B ; Laforest, M J ; Forget, L ; Roewer, I ; Wang, Z ; Longcore, J ; Lang, B F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8e9cab22a4dbc55da88a9efd573ce86c0db1c1f1d7b28839cd9f1f60259ddaee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Acanthamoeba castellanii</topic><topic>Base Sequence</topic><topic>Biological Evolution</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Gene Expression Regulation, Fungal - physiology</topic><topic>Genetic Code</topic><topic>Genome, Fungal</topic><topic>Introns</topic><topic>Mitochondria - genetics</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Phylogeny</topic><topic>Ribosomal Proteins - genetics</topic><topic>RNA Editing</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paquin, B</creatorcontrib><creatorcontrib>Laforest, M J</creatorcontrib><creatorcontrib>Forget, L</creatorcontrib><creatorcontrib>Roewer, I</creatorcontrib><creatorcontrib>Wang, Z</creatorcontrib><creatorcontrib>Longcore, J</creatorcontrib><creatorcontrib>Lang, B F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paquin, B</au><au>Laforest, M J</au><au>Forget, L</au><au>Roewer, I</au><au>Wang, Z</au><au>Longcore, J</au><au>Lang, B F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression</atitle><jtitle>Current genetics</jtitle><addtitle>Curr Genet</addtitle><date>1997-05-01</date><risdate>1997</risdate><volume>31</volume><issue>5</issue><spage>380</spage><epage>395</epage><pages>380-395</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene expression in fungal mitochondria. By using our new sequence data for evolutionary studies, we were able to construct phylogenetic trees that provide further solid evidence that animals and fungi share a common ancestor to the exclusion of chlorophytes and protists. With a database comprising multiple mitochondrial gene sequences, the level of support for our mitochondrial phylogenies is unprecedented, in comparison to trees inferred with nuclear ribosomal RNA sequences. We also found several new molecular features in the mitochondrial genomes of lower fungi, including: (1) tRNA editing, which is the same type as that found in the mitochondria of the amoeboid protozoan Acanthamoeba castellanii; (2) two novel types of putative mobile DNA elements, one encoding a site-specific endonuclease that confers mobility on the element, and the other constituting a class of highly compact, structured elements; and (3) a large number of introns, which provide insights into intron origins and evolution. Here, we present an overview of these results, and discuss examples of the diversity of structures found in the fungal mitochondrial genome.</abstract><cop>United States</cop><pmid>9162109</pmid><doi>10.1007/s002940050220</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-8083 |
ispartof | Current genetics, 1997-05, Vol.31 (5), p.380-395 |
issn | 0172-8083 1432-0983 |
language | eng |
recordid | cdi_proquest_miscellaneous_79027282 |
source | MEDLINE; SpringerLink (Online service) |
subjects | Acanthamoeba castellanii Base Sequence Biological Evolution DNA, Mitochondrial - genetics Gene Expression Regulation, Fungal - physiology Genetic Code Genome, Fungal Introns Mitochondria - genetics Molecular Sequence Data Nucleic Acid Conformation Phylogeny Ribosomal Proteins - genetics RNA Editing Space life sciences |
title | The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fungal%20mitochondrial%20genome%20project:%20evolution%20of%20fungal%20mitochondrial%20genomes%20and%20their%20gene%20expression&rft.jtitle=Current%20genetics&rft.au=Paquin,%20B&rft.date=1997-05-01&rft.volume=31&rft.issue=5&rft.spage=380&rft.epage=395&rft.pages=380-395&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s002940050220&rft_dat=%3Cproquest_cross%3E16052741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16052741&rft_id=info:pmid/9162109&rfr_iscdi=true |