Edge-shrinking interpolation for medical images

A new algorithm for interpolating the missing data between two adjacent medical images is presented. Our method is useful for solving the interpolation of any region-represented images of an object to be reconstructed, even when the object is stretched abruptly, branched or hollow, as often occurs i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 1997-03, Vol.21 (2), p.91-101
Hauptverfasser: Liu, Yuh-Hwan, Sun, Yung-Nien, Mao, Chi-Wu, Lin, Chii-Jeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 2
container_start_page 91
container_title Computerized medical imaging and graphics
container_volume 21
creator Liu, Yuh-Hwan
Sun, Yung-Nien
Mao, Chi-Wu
Lin, Chii-Jeng
description A new algorithm for interpolating the missing data between two adjacent medical images is presented. Our method is useful for solving the interpolation of any region-represented images of an object to be reconstructed, even when the object is stretched abruptly, branched or hollow, as often occurs in medical images, which cases can not be handled well by existing methods. When this algorithm is applied, the nonoverlapped regions of the same object in the two base images are first extracted and encoded by chamfer distance code on every pixel in these regions. Then, the outer edges of the nonoverlapping regions are shrunk inward simultaneously so that the stretched edges reach the edges of the overlapping regions at the same time. The distance codes in nonoverlapping regions are used to limit the shrinking of these edges in the interpolation process. The proposed method also provides object centralization and enlargement operations to obtain stable and reasonable results in complicated case. The experimental results show that the proposed method is more effective and efficient in resolving general interpolation tasks than the existing methods (S. P. Raya and J. K. Udupa, IEEE Trans. Med. Imag. 9, 32–42, 1990; G. T. Herman et al., IEEE Comput. Graph. Appl. 12, 69–79, 1992; J. F. Guo et al., Comput. Med. Imag. Graph. 19, 267–279, 1995).
doi_str_mv 10.1016/S0895-6111(96)00063-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79011142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611196000638</els_id><sourcerecordid>23443237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-ff6dd1c1af1e276c1df9ecc25e4023d31ad2c19ee5ed889ab61b27811c4b62993</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMotVZ_gtCDiB7WZrKbZHMSKfUDCh7Uc0iT2Rrd7tZkK_jvTT_otacc5pmZvM8Qcgn0DiiI0RstFc8EANwocUspFXlWHpE-lFJlVEo4Jv09ckrOYvxKEKMSeqSngDMuiz4ZTdwcs_gZfPPtm_nQNx2GZVubzrfNsGrDcIHOW1MP_cLMMZ6Tk8rUES9274B8PE7ex8_Z9PXpZfwwzSyneZdVlXAOLJgKkElhwVUKrWUcC8pyl4NxzIJC5OjKUpmZgBmTJYAtZoIplQ_I9XbuMrQ_K4ydXvhosa5Ng-0qaqloilWwgyDLiyJnuTwIgkhqJC8SyLegDW2MASu9DCl8-NNA9Vq93qjXa69aCb1Rr8vUd7lbsJolafuunetUv9rVTUxCq2Aa6-MeY4JDSdfJ77cYJr2_HoOO1mNj0xkC2k671h_4yD_R9J7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16071754</pqid></control><display><type>article</type><title>Edge-shrinking interpolation for medical images</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Yuh-Hwan ; Sun, Yung-Nien ; Mao, Chi-Wu ; Lin, Chii-Jeng</creator><creatorcontrib>Liu, Yuh-Hwan ; Sun, Yung-Nien ; Mao, Chi-Wu ; Lin, Chii-Jeng</creatorcontrib><description>A new algorithm for interpolating the missing data between two adjacent medical images is presented. Our method is useful for solving the interpolation of any region-represented images of an object to be reconstructed, even when the object is stretched abruptly, branched or hollow, as often occurs in medical images, which cases can not be handled well by existing methods. When this algorithm is applied, the nonoverlapped regions of the same object in the two base images are first extracted and encoded by chamfer distance code on every pixel in these regions. Then, the outer edges of the nonoverlapping regions are shrunk inward simultaneously so that the stretched edges reach the edges of the overlapping regions at the same time. The distance codes in nonoverlapping regions are used to limit the shrinking of these edges in the interpolation process. The proposed method also provides object centralization and enlargement operations to obtain stable and reasonable results in complicated case. The experimental results show that the proposed method is more effective and efficient in resolving general interpolation tasks than the existing methods (S. P. Raya and J. K. Udupa, IEEE Trans. Med. Imag. 9, 32–42, 1990; G. T. Herman et al., IEEE Comput. Graph. Appl. 12, 69–79, 1992; J. F. Guo et al., Comput. Med. Imag. Graph. 19, 267–279, 1995).</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/S0895-6111(96)00063-8</identifier><identifier>PMID: 9152574</identifier><language>eng</language><publisher>New York, NY: Elsevier Ltd</publisher><subject>Algorithms ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Diagnostic Imaging ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted ; Interpolation ; Medical computing and teaching ; Medical image ; Medical sciences ; Object centralization ; Object enlargement ; Positive and negative object ; Software Design ; Three-dimensional reconstruction</subject><ispartof>Computerized medical imaging and graphics, 1997-03, Vol.21 (2), p.91-101</ispartof><rights>1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-ff6dd1c1af1e276c1df9ecc25e4023d31ad2c19ee5ed889ab61b27811c4b62993</citedby><cites>FETCH-LOGICAL-c503t-ff6dd1c1af1e276c1df9ecc25e4023d31ad2c19ee5ed889ab61b27811c4b62993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0895-6111(96)00063-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2651809$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9152574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuh-Hwan</creatorcontrib><creatorcontrib>Sun, Yung-Nien</creatorcontrib><creatorcontrib>Mao, Chi-Wu</creatorcontrib><creatorcontrib>Lin, Chii-Jeng</creatorcontrib><title>Edge-shrinking interpolation for medical images</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>A new algorithm for interpolating the missing data between two adjacent medical images is presented. Our method is useful for solving the interpolation of any region-represented images of an object to be reconstructed, even when the object is stretched abruptly, branched or hollow, as often occurs in medical images, which cases can not be handled well by existing methods. When this algorithm is applied, the nonoverlapped regions of the same object in the two base images are first extracted and encoded by chamfer distance code on every pixel in these regions. Then, the outer edges of the nonoverlapping regions are shrunk inward simultaneously so that the stretched edges reach the edges of the overlapping regions at the same time. The distance codes in nonoverlapping regions are used to limit the shrinking of these edges in the interpolation process. The proposed method also provides object centralization and enlargement operations to obtain stable and reasonable results in complicated case. The experimental results show that the proposed method is more effective and efficient in resolving general interpolation tasks than the existing methods (S. P. Raya and J. K. Udupa, IEEE Trans. Med. Imag. 9, 32–42, 1990; G. T. Herman et al., IEEE Comput. Graph. Appl. 12, 69–79, 1992; J. F. Guo et al., Comput. Med. Imag. Graph. 19, 267–279, 1995).</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Diagnostic Imaging</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted</subject><subject>Interpolation</subject><subject>Medical computing and teaching</subject><subject>Medical image</subject><subject>Medical sciences</subject><subject>Object centralization</subject><subject>Object enlargement</subject><subject>Positive and negative object</subject><subject>Software Design</subject><subject>Three-dimensional reconstruction</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1LAzEQhoMotVZ_gtCDiB7WZrKbZHMSKfUDCh7Uc0iT2Rrd7tZkK_jvTT_otacc5pmZvM8Qcgn0DiiI0RstFc8EANwocUspFXlWHpE-lFJlVEo4Jv09ckrOYvxKEKMSeqSngDMuiz4ZTdwcs_gZfPPtm_nQNx2GZVubzrfNsGrDcIHOW1MP_cLMMZ6Tk8rUES9274B8PE7ex8_Z9PXpZfwwzSyneZdVlXAOLJgKkElhwVUKrWUcC8pyl4NxzIJC5OjKUpmZgBmTJYAtZoIplQ_I9XbuMrQ_K4ydXvhosa5Ng-0qaqloilWwgyDLiyJnuTwIgkhqJC8SyLegDW2MASu9DCl8-NNA9Vq93qjXa69aCb1Rr8vUd7lbsJolafuunetUv9rVTUxCq2Aa6-MeY4JDSdfJ77cYJr2_HoOO1mNj0xkC2k671h_4yD_R9J7A</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Liu, Yuh-Hwan</creator><creator>Sun, Yung-Nien</creator><creator>Mao, Chi-Wu</creator><creator>Lin, Chii-Jeng</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19970301</creationdate><title>Edge-shrinking interpolation for medical images</title><author>Liu, Yuh-Hwan ; Sun, Yung-Nien ; Mao, Chi-Wu ; Lin, Chii-Jeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-ff6dd1c1af1e276c1df9ecc25e4023d31ad2c19ee5ed889ab61b27811c4b62993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Diagnostic Imaging</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted</topic><topic>Interpolation</topic><topic>Medical computing and teaching</topic><topic>Medical image</topic><topic>Medical sciences</topic><topic>Object centralization</topic><topic>Object enlargement</topic><topic>Positive and negative object</topic><topic>Software Design</topic><topic>Three-dimensional reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuh-Hwan</creatorcontrib><creatorcontrib>Sun, Yung-Nien</creatorcontrib><creatorcontrib>Mao, Chi-Wu</creatorcontrib><creatorcontrib>Lin, Chii-Jeng</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuh-Hwan</au><au>Sun, Yung-Nien</au><au>Mao, Chi-Wu</au><au>Lin, Chii-Jeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-shrinking interpolation for medical images</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>21</volume><issue>2</issue><spage>91</spage><epage>101</epage><pages>91-101</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>A new algorithm for interpolating the missing data between two adjacent medical images is presented. Our method is useful for solving the interpolation of any region-represented images of an object to be reconstructed, even when the object is stretched abruptly, branched or hollow, as often occurs in medical images, which cases can not be handled well by existing methods. When this algorithm is applied, the nonoverlapped regions of the same object in the two base images are first extracted and encoded by chamfer distance code on every pixel in these regions. Then, the outer edges of the nonoverlapping regions are shrunk inward simultaneously so that the stretched edges reach the edges of the overlapping regions at the same time. The distance codes in nonoverlapping regions are used to limit the shrinking of these edges in the interpolation process. The proposed method also provides object centralization and enlargement operations to obtain stable and reasonable results in complicated case. The experimental results show that the proposed method is more effective and efficient in resolving general interpolation tasks than the existing methods (S. P. Raya and J. K. Udupa, IEEE Trans. Med. Imag. 9, 32–42, 1990; G. T. Herman et al., IEEE Comput. Graph. Appl. 12, 69–79, 1992; J. F. Guo et al., Comput. Med. Imag. Graph. 19, 267–279, 1995).</abstract><cop>New York, NY</cop><pub>Elsevier Ltd</pub><pmid>9152574</pmid><doi>10.1016/S0895-6111(96)00063-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-6111
ispartof Computerized medical imaging and graphics, 1997-03, Vol.21 (2), p.91-101
issn 0895-6111
1879-0771
language eng
recordid cdi_proquest_miscellaneous_79011142
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Diagnostic Imaging
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted
Interpolation
Medical computing and teaching
Medical image
Medical sciences
Object centralization
Object enlargement
Positive and negative object
Software Design
Three-dimensional reconstruction
title Edge-shrinking interpolation for medical images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-shrinking%20interpolation%20for%20medical%20images&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Liu,%20Yuh-Hwan&rft.date=1997-03-01&rft.volume=21&rft.issue=2&rft.spage=91&rft.epage=101&rft.pages=91-101&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/S0895-6111(96)00063-8&rft_dat=%3Cproquest_cross%3E23443237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16071754&rft_id=info:pmid/9152574&rft_els_id=S0895611196000638&rfr_iscdi=true