Edge-shrinking interpolation for medical images
A new algorithm for interpolating the missing data between two adjacent medical images is presented. Our method is useful for solving the interpolation of any region-represented images of an object to be reconstructed, even when the object is stretched abruptly, branched or hollow, as often occurs i...
Gespeichert in:
Veröffentlicht in: | Computerized medical imaging and graphics 1997-03, Vol.21 (2), p.91-101 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 2 |
container_start_page | 91 |
container_title | Computerized medical imaging and graphics |
container_volume | 21 |
creator | Liu, Yuh-Hwan Sun, Yung-Nien Mao, Chi-Wu Lin, Chii-Jeng |
description | A new algorithm for interpolating the missing data between two adjacent medical images is presented. Our method is useful for solving the interpolation of any region-represented images of an object to be reconstructed, even when the object is stretched abruptly, branched or hollow, as often occurs in medical images, which cases can not be handled well by existing methods. When this algorithm is applied, the nonoverlapped regions of the same object in the two base images are first extracted and encoded by chamfer distance code on every pixel in these regions. Then, the outer edges of the nonoverlapping regions are shrunk inward simultaneously so that the stretched edges reach the edges of the overlapping regions at the same time. The distance codes in nonoverlapping regions are used to limit the shrinking of these edges in the interpolation process. The proposed method also provides object centralization and enlargement operations to obtain stable and reasonable results in complicated case. The experimental results show that the proposed method is more effective and efficient in resolving general interpolation tasks than the existing methods (S. P. Raya and J. K. Udupa, IEEE Trans. Med. Imag. 9, 32–42, 1990; G. T. Herman
et al., IEEE Comput. Graph. Appl. 12, 69–79, 1992; J. F. Guo
et al., Comput. Med. Imag. Graph. 19, 267–279, 1995). |
doi_str_mv | 10.1016/S0895-6111(96)00063-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79011142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611196000638</els_id><sourcerecordid>23443237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-ff6dd1c1af1e276c1df9ecc25e4023d31ad2c19ee5ed889ab61b27811c4b62993</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMotVZ_gtCDiB7WZrKbZHMSKfUDCh7Uc0iT2Rrd7tZkK_jvTT_otacc5pmZvM8Qcgn0DiiI0RstFc8EANwocUspFXlWHpE-lFJlVEo4Jv09ckrOYvxKEKMSeqSngDMuiz4ZTdwcs_gZfPPtm_nQNx2GZVubzrfNsGrDcIHOW1MP_cLMMZ6Tk8rUES9274B8PE7ex8_Z9PXpZfwwzSyneZdVlXAOLJgKkElhwVUKrWUcC8pyl4NxzIJC5OjKUpmZgBmTJYAtZoIplQ_I9XbuMrQ_K4ydXvhosa5Ng-0qaqloilWwgyDLiyJnuTwIgkhqJC8SyLegDW2MASu9DCl8-NNA9Vq93qjXa69aCb1Rr8vUd7lbsJolafuunetUv9rVTUxCq2Aa6-MeY4JDSdfJ77cYJr2_HoOO1mNj0xkC2k671h_4yD_R9J7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16071754</pqid></control><display><type>article</type><title>Edge-shrinking interpolation for medical images</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Yuh-Hwan ; Sun, Yung-Nien ; Mao, Chi-Wu ; Lin, Chii-Jeng</creator><creatorcontrib>Liu, Yuh-Hwan ; Sun, Yung-Nien ; Mao, Chi-Wu ; Lin, Chii-Jeng</creatorcontrib><description>A new algorithm for interpolating the missing data between two adjacent medical images is presented. Our method is useful for solving the interpolation of any region-represented images of an object to be reconstructed, even when the object is stretched abruptly, branched or hollow, as often occurs in medical images, which cases can not be handled well by existing methods. When this algorithm is applied, the nonoverlapped regions of the same object in the two base images are first extracted and encoded by chamfer distance code on every pixel in these regions. Then, the outer edges of the nonoverlapping regions are shrunk inward simultaneously so that the stretched edges reach the edges of the overlapping regions at the same time. The distance codes in nonoverlapping regions are used to limit the shrinking of these edges in the interpolation process. The proposed method also provides object centralization and enlargement operations to obtain stable and reasonable results in complicated case. The experimental results show that the proposed method is more effective and efficient in resolving general interpolation tasks than the existing methods (S. P. Raya and J. K. Udupa, IEEE Trans. Med. Imag. 9, 32–42, 1990; G. T. Herman
et al., IEEE Comput. Graph. Appl. 12, 69–79, 1992; J. F. Guo
et al., Comput. Med. Imag. Graph. 19, 267–279, 1995).</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/S0895-6111(96)00063-8</identifier><identifier>PMID: 9152574</identifier><language>eng</language><publisher>New York, NY: Elsevier Ltd</publisher><subject>Algorithms ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Diagnostic Imaging ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted ; Interpolation ; Medical computing and teaching ; Medical image ; Medical sciences ; Object centralization ; Object enlargement ; Positive and negative object ; Software Design ; Three-dimensional reconstruction</subject><ispartof>Computerized medical imaging and graphics, 1997-03, Vol.21 (2), p.91-101</ispartof><rights>1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-ff6dd1c1af1e276c1df9ecc25e4023d31ad2c19ee5ed889ab61b27811c4b62993</citedby><cites>FETCH-LOGICAL-c503t-ff6dd1c1af1e276c1df9ecc25e4023d31ad2c19ee5ed889ab61b27811c4b62993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0895-6111(96)00063-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2651809$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9152574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuh-Hwan</creatorcontrib><creatorcontrib>Sun, Yung-Nien</creatorcontrib><creatorcontrib>Mao, Chi-Wu</creatorcontrib><creatorcontrib>Lin, Chii-Jeng</creatorcontrib><title>Edge-shrinking interpolation for medical images</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>A new algorithm for interpolating the missing data between two adjacent medical images is presented. Our method is useful for solving the interpolation of any region-represented images of an object to be reconstructed, even when the object is stretched abruptly, branched or hollow, as often occurs in medical images, which cases can not be handled well by existing methods. When this algorithm is applied, the nonoverlapped regions of the same object in the two base images are first extracted and encoded by chamfer distance code on every pixel in these regions. Then, the outer edges of the nonoverlapping regions are shrunk inward simultaneously so that the stretched edges reach the edges of the overlapping regions at the same time. The distance codes in nonoverlapping regions are used to limit the shrinking of these edges in the interpolation process. The proposed method also provides object centralization and enlargement operations to obtain stable and reasonable results in complicated case. The experimental results show that the proposed method is more effective and efficient in resolving general interpolation tasks than the existing methods (S. P. Raya and J. K. Udupa, IEEE Trans. Med. Imag. 9, 32–42, 1990; G. T. Herman
et al., IEEE Comput. Graph. Appl. 12, 69–79, 1992; J. F. Guo
et al., Comput. Med. Imag. Graph. 19, 267–279, 1995).</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Diagnostic Imaging</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted</subject><subject>Interpolation</subject><subject>Medical computing and teaching</subject><subject>Medical image</subject><subject>Medical sciences</subject><subject>Object centralization</subject><subject>Object enlargement</subject><subject>Positive and negative object</subject><subject>Software Design</subject><subject>Three-dimensional reconstruction</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1LAzEQhoMotVZ_gtCDiB7WZrKbZHMSKfUDCh7Uc0iT2Rrd7tZkK_jvTT_otacc5pmZvM8Qcgn0DiiI0RstFc8EANwocUspFXlWHpE-lFJlVEo4Jv09ckrOYvxKEKMSeqSngDMuiz4ZTdwcs_gZfPPtm_nQNx2GZVubzrfNsGrDcIHOW1MP_cLMMZ6Tk8rUES9274B8PE7ex8_Z9PXpZfwwzSyneZdVlXAOLJgKkElhwVUKrWUcC8pyl4NxzIJC5OjKUpmZgBmTJYAtZoIplQ_I9XbuMrQ_K4ydXvhosa5Ng-0qaqloilWwgyDLiyJnuTwIgkhqJC8SyLegDW2MASu9DCl8-NNA9Vq93qjXa69aCb1Rr8vUd7lbsJolafuunetUv9rVTUxCq2Aa6-MeY4JDSdfJ77cYJr2_HoOO1mNj0xkC2k671h_4yD_R9J7A</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Liu, Yuh-Hwan</creator><creator>Sun, Yung-Nien</creator><creator>Mao, Chi-Wu</creator><creator>Lin, Chii-Jeng</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19970301</creationdate><title>Edge-shrinking interpolation for medical images</title><author>Liu, Yuh-Hwan ; Sun, Yung-Nien ; Mao, Chi-Wu ; Lin, Chii-Jeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-ff6dd1c1af1e276c1df9ecc25e4023d31ad2c19ee5ed889ab61b27811c4b62993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Diagnostic Imaging</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted</topic><topic>Interpolation</topic><topic>Medical computing and teaching</topic><topic>Medical image</topic><topic>Medical sciences</topic><topic>Object centralization</topic><topic>Object enlargement</topic><topic>Positive and negative object</topic><topic>Software Design</topic><topic>Three-dimensional reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuh-Hwan</creatorcontrib><creatorcontrib>Sun, Yung-Nien</creatorcontrib><creatorcontrib>Mao, Chi-Wu</creatorcontrib><creatorcontrib>Lin, Chii-Jeng</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuh-Hwan</au><au>Sun, Yung-Nien</au><au>Mao, Chi-Wu</au><au>Lin, Chii-Jeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-shrinking interpolation for medical images</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>21</volume><issue>2</issue><spage>91</spage><epage>101</epage><pages>91-101</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>A new algorithm for interpolating the missing data between two adjacent medical images is presented. Our method is useful for solving the interpolation of any region-represented images of an object to be reconstructed, even when the object is stretched abruptly, branched or hollow, as often occurs in medical images, which cases can not be handled well by existing methods. When this algorithm is applied, the nonoverlapped regions of the same object in the two base images are first extracted and encoded by chamfer distance code on every pixel in these regions. Then, the outer edges of the nonoverlapping regions are shrunk inward simultaneously so that the stretched edges reach the edges of the overlapping regions at the same time. The distance codes in nonoverlapping regions are used to limit the shrinking of these edges in the interpolation process. The proposed method also provides object centralization and enlargement operations to obtain stable and reasonable results in complicated case. The experimental results show that the proposed method is more effective and efficient in resolving general interpolation tasks than the existing methods (S. P. Raya and J. K. Udupa, IEEE Trans. Med. Imag. 9, 32–42, 1990; G. T. Herman
et al., IEEE Comput. Graph. Appl. 12, 69–79, 1992; J. F. Guo
et al., Comput. Med. Imag. Graph. 19, 267–279, 1995).</abstract><cop>New York, NY</cop><pub>Elsevier Ltd</pub><pmid>9152574</pmid><doi>10.1016/S0895-6111(96)00063-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-6111 |
ispartof | Computerized medical imaging and graphics, 1997-03, Vol.21 (2), p.91-101 |
issn | 0895-6111 1879-0771 |
language | eng |
recordid | cdi_proquest_miscellaneous_79011142 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Biological and medical sciences Computerized, statistical medical data processing and models in biomedicine Diagnostic Imaging Humans Image Enhancement - methods Image Processing, Computer-Assisted Interpolation Medical computing and teaching Medical image Medical sciences Object centralization Object enlargement Positive and negative object Software Design Three-dimensional reconstruction |
title | Edge-shrinking interpolation for medical images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-shrinking%20interpolation%20for%20medical%20images&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Liu,%20Yuh-Hwan&rft.date=1997-03-01&rft.volume=21&rft.issue=2&rft.spage=91&rft.epage=101&rft.pages=91-101&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/S0895-6111(96)00063-8&rft_dat=%3Cproquest_cross%3E23443237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16071754&rft_id=info:pmid/9152574&rft_els_id=S0895611196000638&rfr_iscdi=true |