Determinants of EcoRI Endonuclease Sequence Discrimination

The arginine at position 200 of EcoRI endonuclease is thought to make two hydrogen bonds to the guanine of the sequence GAATTC and thus be an important determinant of sequence discrimination. Arg-200 was replaced by each of the other 19 naturally occurring amino acids, and the mutant endonucleases w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1989-05, Vol.86 (10), p.3579-3583
Hauptverfasser: Needels, M. C., Fried, S. R., Love, R., Rosenberg, J. M., Boyer, H. W., Greene, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3583
container_issue 10
container_start_page 3579
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 86
creator Needels, M. C.
Fried, S. R.
Love, R.
Rosenberg, J. M.
Boyer, H. W.
Greene, P. J.
description The arginine at position 200 of EcoRI endonuclease is thought to make two hydrogen bonds to the guanine of the sequence GAATTC and thus be an important determinant of sequence discrimination. Arg-200 was replaced by each of the other 19 naturally occurring amino acids, and the mutant endonucleases were assessed for activities in vivo and in vitro. The mutant endonuclease with lysine at position 200 exhibits the most in vivo activity of all the position 200 mutants, although the in vitro activity is less than 1/100th of wild-type activity. Five other mutants show more drastically reduced levels of in vivo activity (Cys, Pro, Val, Ser, and Trp). The Cys, Val, and Ser mutant enzymes appear to have in vivo activity which is specific for the wild-type canonical site despite the loss of hydrogen bonding potential at position 200. The Pro and Trp mutants retain in vivo activity which is independent of the presence of the EcoRI methylase. In crude cell lysates, only the Cys mutant shows a very low level of in vitro activity. None of the mutant enzymes show a preference for alternative sites in assays in vitro. The implications of these results are discussed.
doi_str_mv 10.1073/pnas.86.10.3579
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_78997052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>33916</jstor_id><sourcerecordid>33916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-7f4d139252135c49c56bb4fb8b5e8ae2af249af2845d0f0d37501aa688ffe5563</originalsourceid><addsrcrecordid>eNqFkctrFTEUxoMo9VpdC4IyC7Gruc37IbiQ9lYLBcHHOmQyiU6Zm9wmGdH_3kzv9Kob3SQcvt85-U4-AJ4iuEZQkNNdMHkteS3WhAl1D6wQVKjlVMH7YAUhFq2kmD4Ej3K-hhAqJuEROMKcCYHJCrw-d8Wl7RBMKLmJvtnY-PGy2YQ-hsmOzmTXfHI3kwvWNedDtmmY4TLE8Bg88GbM7slyH4MvF5vPZ-_bqw_vLs_eXrWWYVRa4WmPiMK1IMxSZRnvOuo72TEnjcPGY6rqISnroYc9EQwiY7iU3jvGODkGb_Zzd1O3db11oSQz6l11YtJPHc2g_1bC8E1_jd81lgJJVPtfLf0p1kVy0du6hxtHE1ycshZSKQEZ_i-IGJMUytnR6R60KeacnD-YQVDPseg5Fi35XM-x1I7nf-5w4Jccqv5y0U22ZvTJBDvkA8YVl-r2K04WbJ5_p_5-R_tpHIv7USr54p9kBZ7tgetcYjoQhCjEyS_JerdB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15584086</pqid></control><display><type>article</type><title>Determinants of EcoRI Endonuclease Sequence Discrimination</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Needels, M. C. ; Fried, S. R. ; Love, R. ; Rosenberg, J. M. ; Boyer, H. W. ; Greene, P. J.</creator><creatorcontrib>Needels, M. C. ; Fried, S. R. ; Love, R. ; Rosenberg, J. M. ; Boyer, H. W. ; Greene, P. J.</creatorcontrib><description>The arginine at position 200 of EcoRI endonuclease is thought to make two hydrogen bonds to the guanine of the sequence GAATTC and thus be an important determinant of sequence discrimination. Arg-200 was replaced by each of the other 19 naturally occurring amino acids, and the mutant endonucleases were assessed for activities in vivo and in vitro. The mutant endonuclease with lysine at position 200 exhibits the most in vivo activity of all the position 200 mutants, although the in vitro activity is less than 1/100th of wild-type activity. Five other mutants show more drastically reduced levels of in vivo activity (Cys, Pro, Val, Ser, and Trp). The Cys, Val, and Ser mutant enzymes appear to have in vivo activity which is specific for the wild-type canonical site despite the loss of hydrogen bonding potential at position 200. The Pro and Trp mutants retain in vivo activity which is independent of the presence of the EcoRI methylase. In crude cell lysates, only the Cys mutant shows a very low level of in vitro activity. None of the mutant enzymes show a preference for alternative sites in assays in vitro. The implications of these results are discussed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.86.10.3579</identifier><identifier>PMID: 2657723</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Amino acids ; Analytical, structural and metabolic biochemistry ; Arginine ; Bacterial Proteins - ultrastructure ; Binding Sites ; Biological and medical sciences ; Cell culture techniques ; Curves ; Deoxyribonuclease EcoRI - genetics ; Deoxyribonuclease EcoRI - metabolism ; DNA ; DNA cleavage ; DNA Mutational Analysis ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - ultrastructure ; Enzymes ; Enzymes and enzyme inhibitors ; Escherichia coli - enzymology ; Escherichia coli - growth &amp; development ; Fundamental and applied biological sciences. Psychology ; Hydrogen Bonding ; Hydrogen bonds ; Hydrolases ; Models, Molecular ; Phenotypes ; Plasmids ; Protein Conformation ; Structure-Activity Relationship ; Substrate Specificity ; Viability</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1989-05, Vol.86 (10), p.3579-3583</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-7f4d139252135c49c56bb4fb8b5e8ae2af249af2845d0f0d37501aa688ffe5563</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/86/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/33916$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/33916$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6968956$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2657723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Needels, M. C.</creatorcontrib><creatorcontrib>Fried, S. R.</creatorcontrib><creatorcontrib>Love, R.</creatorcontrib><creatorcontrib>Rosenberg, J. M.</creatorcontrib><creatorcontrib>Boyer, H. W.</creatorcontrib><creatorcontrib>Greene, P. J.</creatorcontrib><title>Determinants of EcoRI Endonuclease Sequence Discrimination</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The arginine at position 200 of EcoRI endonuclease is thought to make two hydrogen bonds to the guanine of the sequence GAATTC and thus be an important determinant of sequence discrimination. Arg-200 was replaced by each of the other 19 naturally occurring amino acids, and the mutant endonucleases were assessed for activities in vivo and in vitro. The mutant endonuclease with lysine at position 200 exhibits the most in vivo activity of all the position 200 mutants, although the in vitro activity is less than 1/100th of wild-type activity. Five other mutants show more drastically reduced levels of in vivo activity (Cys, Pro, Val, Ser, and Trp). The Cys, Val, and Ser mutant enzymes appear to have in vivo activity which is specific for the wild-type canonical site despite the loss of hydrogen bonding potential at position 200. The Pro and Trp mutants retain in vivo activity which is independent of the presence of the EcoRI methylase. In crude cell lysates, only the Cys mutant shows a very low level of in vitro activity. None of the mutant enzymes show a preference for alternative sites in assays in vitro. The implications of these results are discussed.</description><subject>Amino acids</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Arginine</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Cell culture techniques</subject><subject>Curves</subject><subject>Deoxyribonuclease EcoRI - genetics</subject><subject>Deoxyribonuclease EcoRI - metabolism</subject><subject>DNA</subject><subject>DNA cleavage</subject><subject>DNA Mutational Analysis</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - ultrastructure</subject><subject>Enzymes</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrolases</subject><subject>Models, Molecular</subject><subject>Phenotypes</subject><subject>Plasmids</subject><subject>Protein Conformation</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Viability</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctrFTEUxoMo9VpdC4IyC7Gruc37IbiQ9lYLBcHHOmQyiU6Zm9wmGdH_3kzv9Kob3SQcvt85-U4-AJ4iuEZQkNNdMHkteS3WhAl1D6wQVKjlVMH7YAUhFq2kmD4Ej3K-hhAqJuEROMKcCYHJCrw-d8Wl7RBMKLmJvtnY-PGy2YQ-hsmOzmTXfHI3kwvWNedDtmmY4TLE8Bg88GbM7slyH4MvF5vPZ-_bqw_vLs_eXrWWYVRa4WmPiMK1IMxSZRnvOuo72TEnjcPGY6rqISnroYc9EQwiY7iU3jvGODkGb_Zzd1O3db11oSQz6l11YtJPHc2g_1bC8E1_jd81lgJJVPtfLf0p1kVy0du6hxtHE1ycshZSKQEZ_i-IGJMUytnR6R60KeacnD-YQVDPseg5Fi35XM-x1I7nf-5w4Jccqv5y0U22ZvTJBDvkA8YVl-r2K04WbJ5_p_5-R_tpHIv7USr54p9kBZ7tgetcYjoQhCjEyS_JerdB</recordid><startdate>19890501</startdate><enddate>19890501</enddate><creator>Needels, M. C.</creator><creator>Fried, S. R.</creator><creator>Love, R.</creator><creator>Rosenberg, J. M.</creator><creator>Boyer, H. W.</creator><creator>Greene, P. J.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19890501</creationdate><title>Determinants of EcoRI Endonuclease Sequence Discrimination</title><author>Needels, M. C. ; Fried, S. R. ; Love, R. ; Rosenberg, J. M. ; Boyer, H. W. ; Greene, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-7f4d139252135c49c56bb4fb8b5e8ae2af249af2845d0f0d37501aa688ffe5563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Amino acids</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Arginine</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Cell culture techniques</topic><topic>Curves</topic><topic>Deoxyribonuclease EcoRI - genetics</topic><topic>Deoxyribonuclease EcoRI - metabolism</topic><topic>DNA</topic><topic>DNA cleavage</topic><topic>DNA Mutational Analysis</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - ultrastructure</topic><topic>Enzymes</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrolases</topic><topic>Models, Molecular</topic><topic>Phenotypes</topic><topic>Plasmids</topic><topic>Protein Conformation</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Needels, M. C.</creatorcontrib><creatorcontrib>Fried, S. R.</creatorcontrib><creatorcontrib>Love, R.</creatorcontrib><creatorcontrib>Rosenberg, J. M.</creatorcontrib><creatorcontrib>Boyer, H. W.</creatorcontrib><creatorcontrib>Greene, P. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Needels, M. C.</au><au>Fried, S. R.</au><au>Love, R.</au><au>Rosenberg, J. M.</au><au>Boyer, H. W.</au><au>Greene, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determinants of EcoRI Endonuclease Sequence Discrimination</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1989-05-01</date><risdate>1989</risdate><volume>86</volume><issue>10</issue><spage>3579</spage><epage>3583</epage><pages>3579-3583</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The arginine at position 200 of EcoRI endonuclease is thought to make two hydrogen bonds to the guanine of the sequence GAATTC and thus be an important determinant of sequence discrimination. Arg-200 was replaced by each of the other 19 naturally occurring amino acids, and the mutant endonucleases were assessed for activities in vivo and in vitro. The mutant endonuclease with lysine at position 200 exhibits the most in vivo activity of all the position 200 mutants, although the in vitro activity is less than 1/100th of wild-type activity. Five other mutants show more drastically reduced levels of in vivo activity (Cys, Pro, Val, Ser, and Trp). The Cys, Val, and Ser mutant enzymes appear to have in vivo activity which is specific for the wild-type canonical site despite the loss of hydrogen bonding potential at position 200. The Pro and Trp mutants retain in vivo activity which is independent of the presence of the EcoRI methylase. In crude cell lysates, only the Cys mutant shows a very low level of in vitro activity. None of the mutant enzymes show a preference for alternative sites in assays in vitro. The implications of these results are discussed.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2657723</pmid><doi>10.1073/pnas.86.10.3579</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1989-05, Vol.86 (10), p.3579-3583
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_78997052
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acids
Analytical, structural and metabolic biochemistry
Arginine
Bacterial Proteins - ultrastructure
Binding Sites
Biological and medical sciences
Cell culture techniques
Curves
Deoxyribonuclease EcoRI - genetics
Deoxyribonuclease EcoRI - metabolism
DNA
DNA cleavage
DNA Mutational Analysis
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - ultrastructure
Enzymes
Enzymes and enzyme inhibitors
Escherichia coli - enzymology
Escherichia coli - growth & development
Fundamental and applied biological sciences. Psychology
Hydrogen Bonding
Hydrogen bonds
Hydrolases
Models, Molecular
Phenotypes
Plasmids
Protein Conformation
Structure-Activity Relationship
Substrate Specificity
Viability
title Determinants of EcoRI Endonuclease Sequence Discrimination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determinants%20of%20EcoRI%20Endonuclease%20Sequence%20Discrimination&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Needels,%20M.%20C.&rft.date=1989-05-01&rft.volume=86&rft.issue=10&rft.spage=3579&rft.epage=3583&rft.pages=3579-3583&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.86.10.3579&rft_dat=%3Cjstor_proqu%3E33916%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15584086&rft_id=info:pmid/2657723&rft_jstor_id=33916&rfr_iscdi=true