Estimation of Error Rates in Discriminant Analysis with Selection of Variables

Accurate estimation of misclassification rates in discriminant analysis with selection of variables by, for example, a stepwise algorithm, is complicated by the large optimistic bias inherent in standard estimators such as those obtained by the resubstitution method. Application of a bootstrap adjus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 1989-03, Vol.45 (1), p.289-299
Hauptverfasser: Snapinn, Steven M., Knoke, James D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 1
container_start_page 289
container_title Biometrics
container_volume 45
creator Snapinn, Steven M.
Knoke, James D.
description Accurate estimation of misclassification rates in discriminant analysis with selection of variables by, for example, a stepwise algorithm, is complicated by the large optimistic bias inherent in standard estimators such as those obtained by the resubstitution method. Application of a bootstrap adjustment can reduce the bias of the resubstitution method; however, the bootstrap technique requires the variable selection procedure to be repeated many times and is therefore difficult to compute. In this paper we propose a smoothed estimator that requires relatively little computation and which, on the basis of a Monte Carlo sampling study, is found to perform generally at least as well as the bootstrap method.
doi_str_mv 10.2307/2532053
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_78996616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2532053</jstor_id><sourcerecordid>2532053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-fbe346da4d123e2f9e3b60ef0ce8c8664bd09df0ae214f91aac61d940bee527b3</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EKqUgfgGSDyynwNiOneRYlbJIFUhs4hY5zli4ygJ2KtR_T1ADnDiNRvPNm3mPkEMG51xAcsGl4CDFFhkzGbMIYg7bZAwAKhIxe90leyEs-zaTwEdkxBMOINWY3M1D52rdubahraVz71tPH3SHgbqGXrpgvKtdo5uOThtdrYML9NN1b_QRKzQ_ay_aO11UGPbJjtVVwIOhTsjz1fxpdhMt7q9vZ9NFZISQXWQLFLEqdVwyLpDbDEWhAC0YTE2qVFyUkJUWNHIW24xpbRQrsxgKRMmTQkzI6Ub33bcfKwxdXvevYlXpBttVyJM0y5RiqgfPNqDxbQgebf7eG9J-nTPIv5PLh-R68miQXBU1lr_cEFU_PxnmOhhdWa8b48KfXKYSmfZ2JuR4wy1D1_p_z30B0kyAeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78996616</pqid></control><display><type>article</type><title>Estimation of Error Rates in Discriminant Analysis with Selection of Variables</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Snapinn, Steven M. ; Knoke, James D.</creator><creatorcontrib>Snapinn, Steven M. ; Knoke, James D.</creatorcontrib><description>Accurate estimation of misclassification rates in discriminant analysis with selection of variables by, for example, a stepwise algorithm, is complicated by the large optimistic bias inherent in standard estimators such as those obtained by the resubstitution method. Application of a bootstrap adjustment can reduce the bias of the resubstitution method; however, the bootstrap technique requires the variable selection procedure to be repeated many times and is therefore difficult to compute. In this paper we propose a smoothed estimator that requires relatively little computation and which, on the basis of a Monte Carlo sampling study, is found to perform generally at least as well as the bootstrap method.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2532053</identifier><identifier>PMID: 2720056</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, MA: Biometric Society</publisher><subject>Algorithms ; Analytical estimating ; Biological and medical sciences ; Biometrics ; Biometry ; Bootstrap resampling ; Discriminant analysis ; Discriminants ; Error rates ; Estimation bias ; Estimation methods ; Estimators ; Fundamental and applied biological sciences. Psychology ; General aspects ; Heart Failure - metabolism ; Heart Failure - mortality ; Hormones ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Biological ; Models, Statistical ; Monte Carlo Method ; Regression Analysis ; Sampling Studies</subject><ispartof>Biometrics, 1989-03, Vol.45 (1), p.289-299</ispartof><rights>Copyright 1989 The Biometric Society</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-fbe346da4d123e2f9e3b60ef0ce8c8664bd09df0ae214f91aac61d940bee527b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2532053$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2532053$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19675812$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2720056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snapinn, Steven M.</creatorcontrib><creatorcontrib>Knoke, James D.</creatorcontrib><title>Estimation of Error Rates in Discriminant Analysis with Selection of Variables</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Accurate estimation of misclassification rates in discriminant analysis with selection of variables by, for example, a stepwise algorithm, is complicated by the large optimistic bias inherent in standard estimators such as those obtained by the resubstitution method. Application of a bootstrap adjustment can reduce the bias of the resubstitution method; however, the bootstrap technique requires the variable selection procedure to be repeated many times and is therefore difficult to compute. In this paper we propose a smoothed estimator that requires relatively little computation and which, on the basis of a Monte Carlo sampling study, is found to perform generally at least as well as the bootstrap method.</description><subject>Algorithms</subject><subject>Analytical estimating</subject><subject>Biological and medical sciences</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Bootstrap resampling</subject><subject>Discriminant analysis</subject><subject>Discriminants</subject><subject>Error rates</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Heart Failure - metabolism</subject><subject>Heart Failure - mortality</subject><subject>Hormones</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Regression Analysis</subject><subject>Sampling Studies</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kElPwzAQhS0EKqUgfgGSDyynwNiOneRYlbJIFUhs4hY5zli4ygJ2KtR_T1ADnDiNRvPNm3mPkEMG51xAcsGl4CDFFhkzGbMIYg7bZAwAKhIxe90leyEs-zaTwEdkxBMOINWY3M1D52rdubahraVz71tPH3SHgbqGXrpgvKtdo5uOThtdrYML9NN1b_QRKzQ_ay_aO11UGPbJjtVVwIOhTsjz1fxpdhMt7q9vZ9NFZISQXWQLFLEqdVwyLpDbDEWhAC0YTE2qVFyUkJUWNHIW24xpbRQrsxgKRMmTQkzI6Ub33bcfKwxdXvevYlXpBttVyJM0y5RiqgfPNqDxbQgebf7eG9J-nTPIv5PLh-R68miQXBU1lr_cEFU_PxnmOhhdWa8b48KfXKYSmfZ2JuR4wy1D1_p_z30B0kyAeQ</recordid><startdate>19890301</startdate><enddate>19890301</enddate><creator>Snapinn, Steven M.</creator><creator>Knoke, James D.</creator><general>Biometric Society</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19890301</creationdate><title>Estimation of Error Rates in Discriminant Analysis with Selection of Variables</title><author>Snapinn, Steven M. ; Knoke, James D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-fbe346da4d123e2f9e3b60ef0ce8c8664bd09df0ae214f91aac61d940bee527b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Algorithms</topic><topic>Analytical estimating</topic><topic>Biological and medical sciences</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Bootstrap resampling</topic><topic>Discriminant analysis</topic><topic>Discriminants</topic><topic>Error rates</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Heart Failure - metabolism</topic><topic>Heart Failure - mortality</topic><topic>Hormones</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Regression Analysis</topic><topic>Sampling Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snapinn, Steven M.</creatorcontrib><creatorcontrib>Knoke, James D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snapinn, Steven M.</au><au>Knoke, James D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Error Rates in Discriminant Analysis with Selection of Variables</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>1989-03-01</date><risdate>1989</risdate><volume>45</volume><issue>1</issue><spage>289</spage><epage>299</epage><pages>289-299</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Accurate estimation of misclassification rates in discriminant analysis with selection of variables by, for example, a stepwise algorithm, is complicated by the large optimistic bias inherent in standard estimators such as those obtained by the resubstitution method. Application of a bootstrap adjustment can reduce the bias of the resubstitution method; however, the bootstrap technique requires the variable selection procedure to be repeated many times and is therefore difficult to compute. In this paper we propose a smoothed estimator that requires relatively little computation and which, on the basis of a Monte Carlo sampling study, is found to perform generally at least as well as the bootstrap method.</abstract><cop>Malden, MA</cop><pub>Biometric Society</pub><pmid>2720056</pmid><doi>10.2307/2532053</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 1989-03, Vol.45 (1), p.289-299
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_78996616
source Jstor Complete Legacy; MEDLINE; JSTOR Mathematics & Statistics
subjects Algorithms
Analytical estimating
Biological and medical sciences
Biometrics
Biometry
Bootstrap resampling
Discriminant analysis
Discriminants
Error rates
Estimation bias
Estimation methods
Estimators
Fundamental and applied biological sciences. Psychology
General aspects
Heart Failure - metabolism
Heart Failure - mortality
Hormones
Humans
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Biological
Models, Statistical
Monte Carlo Method
Regression Analysis
Sampling Studies
title Estimation of Error Rates in Discriminant Analysis with Selection of Variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Error%20Rates%20in%20Discriminant%20Analysis%20with%20Selection%20of%20Variables&rft.jtitle=Biometrics&rft.au=Snapinn,%20Steven%20M.&rft.date=1989-03-01&rft.volume=45&rft.issue=1&rft.spage=289&rft.epage=299&rft.pages=289-299&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.2307/2532053&rft_dat=%3Cjstor_proqu%3E2532053%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78996616&rft_id=info:pmid/2720056&rft_jstor_id=2532053&rfr_iscdi=true