Toward Understanding Insulin Fibrillation
Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular β-sheet may further stabilize the fibrilla...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical sciences 1997-05, Vol.86 (5), p.517-525 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | 5 |
container_start_page | 517 |
container_title | Journal of pharmaceutical sciences |
container_volume | 86 |
creator | Brange, Jens Andersen, Lennart Laursen, Erik D. Meyn, Giorgio Rasmussen, Eigil |
description | Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular β-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation. |
doi_str_mv | 10.1021/js960297s |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78979544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354915503146</els_id><sourcerecordid>78979544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4271-c7fc1e5a30daf2695007a1cfd2eceb3dc882f0f4703c91c1aba6679037a2064e3</originalsourceid><addsrcrecordid>eNp10E1PGzEQBmCrAtFAe-gPqJQDQkJoy_g7PqIIAgWVSgUVcbEce7YybLzB3kD59120UU70NId5NB8vIV8ofKPA6PFDMQqY0eUDGVHJoFJA9RYZATBWcSnMR7JbygMAKJByh-wYKiTXYkQOb9oXl8P4NgXMpXMpxPRnfJHKqolpfBbnOTaN62KbPpHt2jUFP6_rHrk9O72ZnldX17OL6clV5QXTtPK69hSl4xBczZSRANpRXweGHuc8-MmE1VALDdwb6qmbO6W0Aa4dAyWQ75GDYe4yt08rLJ1dxOKxvyJhuypWT4w2UogeHg7Q57aUjLVd5rhw-dVSsG-x2E0svf26HrqaLzBs5DqHvr-_7rviXVNnl3wsG8aU4pK9saOBvcQGX_-_z37_-Yv2uhp0LB3-3WiXH63SXEv7-8fMKnF_OeN3xk57zwePfbzPEbMtPmLyGGJG39nQxnde-wdxT5eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78979544</pqid></control><display><type>article</type><title>Toward Understanding Insulin Fibrillation</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Brange, Jens ; Andersen, Lennart ; Laursen, Erik D. ; Meyn, Giorgio ; Rasmussen, Eigil</creator><creatorcontrib>Brange, Jens ; Andersen, Lennart ; Laursen, Erik D. ; Meyn, Giorgio ; Rasmussen, Eigil</creatorcontrib><description>Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular β-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1021/js960297s</identifier><identifier>PMID: 9145374</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; General pharmacology ; Hormones. Endocrine system ; Insulin - chemistry ; Insulin - metabolism ; Medical sciences ; Pharmacology. Drug treatments ; Physicochemical properties. Structure-activity relationships ; Protein Conformation ; Rabbits ; Structure-Activity Relationship</subject><ispartof>Journal of pharmaceutical sciences, 1997-05, Vol.86 (5), p.517-525</ispartof><rights>1997 Wiley Liss, Inc. and the American Pharmaceutical Association</rights><rights>Copyright © 1997 Wiley‐Liss, Inc. and the American Pharmaceutical Association</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4271-c7fc1e5a30daf2695007a1cfd2eceb3dc882f0f4703c91c1aba6679037a2064e3</citedby><cites>FETCH-LOGICAL-c4271-c7fc1e5a30daf2695007a1cfd2eceb3dc882f0f4703c91c1aba6679037a2064e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1021%2Fjs960297s$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1021%2Fjs960297s$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2663524$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9145374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brange, Jens</creatorcontrib><creatorcontrib>Andersen, Lennart</creatorcontrib><creatorcontrib>Laursen, Erik D.</creatorcontrib><creatorcontrib>Meyn, Giorgio</creatorcontrib><creatorcontrib>Rasmussen, Eigil</creatorcontrib><title>Toward Understanding Insulin Fibrillation</title><title>Journal of pharmaceutical sciences</title><addtitle>J. Pharm. Sci</addtitle><description>Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular β-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>General pharmacology</subject><subject>Hormones. Endocrine system</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Medical sciences</subject><subject>Pharmacology. Drug treatments</subject><subject>Physicochemical properties. Structure-activity relationships</subject><subject>Protein Conformation</subject><subject>Rabbits</subject><subject>Structure-Activity Relationship</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1PGzEQBmCrAtFAe-gPqJQDQkJoy_g7PqIIAgWVSgUVcbEce7YybLzB3kD59120UU70NId5NB8vIV8ofKPA6PFDMQqY0eUDGVHJoFJA9RYZATBWcSnMR7JbygMAKJByh-wYKiTXYkQOb9oXl8P4NgXMpXMpxPRnfJHKqolpfBbnOTaN62KbPpHt2jUFP6_rHrk9O72ZnldX17OL6clV5QXTtPK69hSl4xBczZSRANpRXweGHuc8-MmE1VALDdwb6qmbO6W0Aa4dAyWQ75GDYe4yt08rLJ1dxOKxvyJhuypWT4w2UogeHg7Q57aUjLVd5rhw-dVSsG-x2E0svf26HrqaLzBs5DqHvr-_7rviXVNnl3wsG8aU4pK9saOBvcQGX_-_z37_-Yv2uhp0LB3-3WiXH63SXEv7-8fMKnF_OeN3xk57zwePfbzPEbMtPmLyGGJG39nQxnde-wdxT5eQ</recordid><startdate>199705</startdate><enddate>199705</enddate><creator>Brange, Jens</creator><creator>Andersen, Lennart</creator><creator>Laursen, Erik D.</creator><creator>Meyn, Giorgio</creator><creator>Rasmussen, Eigil</creator><general>Elsevier Inc</general><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>American Pharmaceutical Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199705</creationdate><title>Toward Understanding Insulin Fibrillation</title><author>Brange, Jens ; Andersen, Lennart ; Laursen, Erik D. ; Meyn, Giorgio ; Rasmussen, Eigil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4271-c7fc1e5a30daf2695007a1cfd2eceb3dc882f0f4703c91c1aba6679037a2064e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>General pharmacology</topic><topic>Hormones. Endocrine system</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Medical sciences</topic><topic>Pharmacology. Drug treatments</topic><topic>Physicochemical properties. Structure-activity relationships</topic><topic>Protein Conformation</topic><topic>Rabbits</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brange, Jens</creatorcontrib><creatorcontrib>Andersen, Lennart</creatorcontrib><creatorcontrib>Laursen, Erik D.</creatorcontrib><creatorcontrib>Meyn, Giorgio</creatorcontrib><creatorcontrib>Rasmussen, Eigil</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brange, Jens</au><au>Andersen, Lennart</au><au>Laursen, Erik D.</au><au>Meyn, Giorgio</au><au>Rasmussen, Eigil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Understanding Insulin Fibrillation</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J. Pharm. Sci</addtitle><date>1997-05</date><risdate>1997</risdate><volume>86</volume><issue>5</issue><spage>517</spage><epage>525</epage><pages>517-525</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular β-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><pmid>9145374</pmid><doi>10.1021/js960297s</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3549 |
ispartof | Journal of pharmaceutical sciences, 1997-05, Vol.86 (5), p.517-525 |
issn | 0022-3549 1520-6017 |
language | eng |
recordid | cdi_proquest_miscellaneous_78979544 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Alma/SFX Local Collection |
subjects | Animals Biological and medical sciences General pharmacology Hormones. Endocrine system Insulin - chemistry Insulin - metabolism Medical sciences Pharmacology. Drug treatments Physicochemical properties. Structure-activity relationships Protein Conformation Rabbits Structure-Activity Relationship |
title | Toward Understanding Insulin Fibrillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Understanding%20Insulin%20Fibrillation&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Brange,%20Jens&rft.date=1997-05&rft.volume=86&rft.issue=5&rft.spage=517&rft.epage=525&rft.pages=517-525&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1021/js960297s&rft_dat=%3Cproquest_cross%3E78979544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78979544&rft_id=info:pmid/9145374&rft_els_id=S0022354915503146&rfr_iscdi=true |