Quantitative measurements of linear birefringence during heating of native collagen
Background and Objective Linear birefringence is an anisotropic property of rat tail tendon, which is largely composed of collagen. Our goal is to show that the dynamic range and sensitivity of the linear birefringence loss of collagen during heating are sufficient for kinetic modeling of the reacti...
Gespeichert in:
Veröffentlicht in: | Lasers in surgery and medicine 1997, Vol.20 (3), p.310-318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 3 |
container_start_page | 310 |
container_title | Lasers in surgery and medicine |
container_volume | 20 |
creator | Maitland, Duncan J. Walsh Jr, Joseph T. |
description | Background and Objective
Linear birefringence is an anisotropic property of rat tail tendon, which is largely composed of collagen. Our goal is to show that the dynamic range and sensitivity of the linear birefringence loss of collagen during heating are sufficient for kinetic modeling of the reaction.
Study Design/ Materials and Methods: The linear birefringence loss was quantified for tendon denatured via both a heated‐isotonic‐saline bath and a heated stage. All measurements were made with a polarizing transmission microscope equipped with a Berek compensator.
Results
The data show that the loss of linear birefringence is a first‐order kinetic reaction. The native rat tail tendon birefringence, Δn = 3.0 ± 0.6 × 10−3 (mean ± std. err.), is lost after denaturation occurs (Δn = 0). Application of the Arrhenius equation to the linear birefringence data yields the activation energy (Ea = 89 ± 1 kcal/mole), pre‐exponential coefficient (A = e130±1 s−1), enthalpy (ΔH = 88 ± 1 kcal/mole) and entropy (ΔS = 197 ± 2 cal/°K·mole).
Conclusion
This study shows that dynamic changes in linear birefringence can be used to monitor thermally induced changes in collagen. Lasers Surg. Medicine 20:310–318, 1997. © 1997 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/(SICI)1096-9101(1997)20:3<310::AID-LSM10>3.0.CO;2-H |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78970748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78970748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4920-2f6a9f7d6939f96d8e7321b9ff1fe54b4013ffe65d292dc1bd96b5287f24b4ef3</originalsourceid><addsrcrecordid>eNp9kF9v0zAUxS0EGmXwEZDygND2kHJtN3HcIaStg7WoUE0dKm9XTmKDIX-GnQz27XFI1RcQT_fq3nOPj3-EnFGYUgD26mS7WqxOKcg0lhToCZVSnDKY89ecwnx-vrqM19sPFN7wKUwXmzMWLx-QyUH_kEyAhj4DyR6TJ95_AwDOQByRI0l5xlKYkO11r5rOdqqzdzqqtfK907VuOh-1Jqpso5WLcuu0cbb5optCR2U_tNFXHW5CDbJmvC7aqlJB85Q8Mqry-tm-HpNP797eLJbxenO1Wpyv42ImGcTMpEoaUaaSSyPTMtOCM5pLY6jRySyfAeXG6DQpmWRlQfNSpnnCMmFYWGrDj8nL0ffWtT967TusrS90CNHotvcoMilAzLIg3I7CwrXeh7_grbO1cvdIAQfUiANqHNDhgA4H1MgAOQbUiAE1_kEdBoCLDTJcBtfn--f7vNblwXPPNuxf7PfKF6oyTjWF9QcZS5MsoSzIbkbZT1vp-7-S_TfYv3KNg2Abj7bWd_rXwVa575gKLhLcfbzCi8vP2fvrXYo7_hu_JrWp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78970748</pqid></control><display><type>article</type><title>Quantitative measurements of linear birefringence during heating of native collagen</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Maitland, Duncan J. ; Walsh Jr, Joseph T.</creator><creatorcontrib>Maitland, Duncan J. ; Walsh Jr, Joseph T.</creatorcontrib><description>Background and Objective
Linear birefringence is an anisotropic property of rat tail tendon, which is largely composed of collagen. Our goal is to show that the dynamic range and sensitivity of the linear birefringence loss of collagen during heating are sufficient for kinetic modeling of the reaction.
Study Design/ Materials and Methods: The linear birefringence loss was quantified for tendon denatured via both a heated‐isotonic‐saline bath and a heated stage. All measurements were made with a polarizing transmission microscope equipped with a Berek compensator.
Results
The data show that the loss of linear birefringence is a first‐order kinetic reaction. The native rat tail tendon birefringence, Δn = 3.0 ± 0.6 × 10−3 (mean ± std. err.), is lost after denaturation occurs (Δn = 0). Application of the Arrhenius equation to the linear birefringence data yields the activation energy (Ea = 89 ± 1 kcal/mole), pre‐exponential coefficient (A = e130±1 s−1), enthalpy (ΔH = 88 ± 1 kcal/mole) and entropy (ΔS = 197 ± 2 cal/°K·mole).
Conclusion
This study shows that dynamic changes in linear birefringence can be used to monitor thermally induced changes in collagen. Lasers Surg. Medicine 20:310–318, 1997. © 1997 Wiley‐Liss, Inc.</description><identifier>ISSN: 0196-8092</identifier><identifier>EISSN: 1096-9101</identifier><identifier>DOI: 10.1002/(SICI)1096-9101(1997)20:3<310::AID-LSM10>3.0.CO;2-H</identifier><identifier>PMID: 9138260</identifier><identifier>CODEN: LSMEDI</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Animals ; anisotropic optical properties of tissue ; Anisotropy ; Arrhenius ; Biological and medical sciences ; Biothermics. Biomagnetism. Bioelectricity ; Birefringence ; Collagen - ultrastructure ; dynamic changes in optical properties ; enthalpy ; entropy ; first-order kinetic reaction ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; Microscopy, Polarization ; polarized light ; rat tail tendon ; Rats ; Rats, Sprague-Dawley ; Tail ; Tendons - ultrastructure ; Tissues, organs and organisms biophysics</subject><ispartof>Lasers in surgery and medicine, 1997, Vol.20 (3), p.310-318</ispartof><rights>Copyright © 1997 Wiley‐Liss, Inc.</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4920-2f6a9f7d6939f96d8e7321b9ff1fe54b4013ffe65d292dc1bd96b5287f24b4ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291096-9101%281997%2920%3A3%3C310%3A%3AAID-LSM10%3E3.0.CO%3B2-H$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291096-9101%281997%2920%3A3%3C310%3A%3AAID-LSM10%3E3.0.CO%3B2-H$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2658512$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9138260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maitland, Duncan J.</creatorcontrib><creatorcontrib>Walsh Jr, Joseph T.</creatorcontrib><title>Quantitative measurements of linear birefringence during heating of native collagen</title><title>Lasers in surgery and medicine</title><addtitle>Lasers Surg. Med</addtitle><description>Background and Objective
Linear birefringence is an anisotropic property of rat tail tendon, which is largely composed of collagen. Our goal is to show that the dynamic range and sensitivity of the linear birefringence loss of collagen during heating are sufficient for kinetic modeling of the reaction.
Study Design/ Materials and Methods: The linear birefringence loss was quantified for tendon denatured via both a heated‐isotonic‐saline bath and a heated stage. All measurements were made with a polarizing transmission microscope equipped with a Berek compensator.
Results
The data show that the loss of linear birefringence is a first‐order kinetic reaction. The native rat tail tendon birefringence, Δn = 3.0 ± 0.6 × 10−3 (mean ± std. err.), is lost after denaturation occurs (Δn = 0). Application of the Arrhenius equation to the linear birefringence data yields the activation energy (Ea = 89 ± 1 kcal/mole), pre‐exponential coefficient (A = e130±1 s−1), enthalpy (ΔH = 88 ± 1 kcal/mole) and entropy (ΔS = 197 ± 2 cal/°K·mole).
Conclusion
This study shows that dynamic changes in linear birefringence can be used to monitor thermally induced changes in collagen. Lasers Surg. Medicine 20:310–318, 1997. © 1997 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>anisotropic optical properties of tissue</subject><subject>Anisotropy</subject><subject>Arrhenius</subject><subject>Biological and medical sciences</subject><subject>Biothermics. Biomagnetism. Bioelectricity</subject><subject>Birefringence</subject><subject>Collagen - ultrastructure</subject><subject>dynamic changes in optical properties</subject><subject>enthalpy</subject><subject>entropy</subject><subject>first-order kinetic reaction</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>Microscopy, Polarization</subject><subject>polarized light</subject><subject>rat tail tendon</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tail</subject><subject>Tendons - ultrastructure</subject><subject>Tissues, organs and organisms biophysics</subject><issn>0196-8092</issn><issn>1096-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF9v0zAUxS0EGmXwEZDygND2kHJtN3HcIaStg7WoUE0dKm9XTmKDIX-GnQz27XFI1RcQT_fq3nOPj3-EnFGYUgD26mS7WqxOKcg0lhToCZVSnDKY89ecwnx-vrqM19sPFN7wKUwXmzMWLx-QyUH_kEyAhj4DyR6TJ95_AwDOQByRI0l5xlKYkO11r5rOdqqzdzqqtfK907VuOh-1Jqpso5WLcuu0cbb5optCR2U_tNFXHW5CDbJmvC7aqlJB85Q8Mqry-tm-HpNP797eLJbxenO1Wpyv42ImGcTMpEoaUaaSSyPTMtOCM5pLY6jRySyfAeXG6DQpmWRlQfNSpnnCMmFYWGrDj8nL0ffWtT967TusrS90CNHotvcoMilAzLIg3I7CwrXeh7_grbO1cvdIAQfUiANqHNDhgA4H1MgAOQbUiAE1_kEdBoCLDTJcBtfn--f7vNblwXPPNuxf7PfKF6oyTjWF9QcZS5MsoSzIbkbZT1vp-7-S_TfYv3KNg2Abj7bWd_rXwVa575gKLhLcfbzCi8vP2fvrXYo7_hu_JrWp</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Maitland, Duncan J.</creator><creator>Walsh Jr, Joseph T.</creator><general>John Wiley & Sons, Inc</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>1997</creationdate><title>Quantitative measurements of linear birefringence during heating of native collagen</title><author>Maitland, Duncan J. ; Walsh Jr, Joseph T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4920-2f6a9f7d6939f96d8e7321b9ff1fe54b4013ffe65d292dc1bd96b5287f24b4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Animals</topic><topic>anisotropic optical properties of tissue</topic><topic>Anisotropy</topic><topic>Arrhenius</topic><topic>Biological and medical sciences</topic><topic>Biothermics. Biomagnetism. Bioelectricity</topic><topic>Birefringence</topic><topic>Collagen - ultrastructure</topic><topic>dynamic changes in optical properties</topic><topic>enthalpy</topic><topic>entropy</topic><topic>first-order kinetic reaction</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>Microscopy, Polarization</topic><topic>polarized light</topic><topic>rat tail tendon</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tail</topic><topic>Tendons - ultrastructure</topic><topic>Tissues, organs and organisms biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maitland, Duncan J.</creatorcontrib><creatorcontrib>Walsh Jr, Joseph T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lasers in surgery and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maitland, Duncan J.</au><au>Walsh Jr, Joseph T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative measurements of linear birefringence during heating of native collagen</atitle><jtitle>Lasers in surgery and medicine</jtitle><addtitle>Lasers Surg. Med</addtitle><date>1997</date><risdate>1997</risdate><volume>20</volume><issue>3</issue><spage>310</spage><epage>318</epage><pages>310-318</pages><issn>0196-8092</issn><eissn>1096-9101</eissn><coden>LSMEDI</coden><abstract>Background and Objective
Linear birefringence is an anisotropic property of rat tail tendon, which is largely composed of collagen. Our goal is to show that the dynamic range and sensitivity of the linear birefringence loss of collagen during heating are sufficient for kinetic modeling of the reaction.
Study Design/ Materials and Methods: The linear birefringence loss was quantified for tendon denatured via both a heated‐isotonic‐saline bath and a heated stage. All measurements were made with a polarizing transmission microscope equipped with a Berek compensator.
Results
The data show that the loss of linear birefringence is a first‐order kinetic reaction. The native rat tail tendon birefringence, Δn = 3.0 ± 0.6 × 10−3 (mean ± std. err.), is lost after denaturation occurs (Δn = 0). Application of the Arrhenius equation to the linear birefringence data yields the activation energy (Ea = 89 ± 1 kcal/mole), pre‐exponential coefficient (A = e130±1 s−1), enthalpy (ΔH = 88 ± 1 kcal/mole) and entropy (ΔS = 197 ± 2 cal/°K·mole).
Conclusion
This study shows that dynamic changes in linear birefringence can be used to monitor thermally induced changes in collagen. Lasers Surg. Medicine 20:310–318, 1997. © 1997 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>9138260</pmid><doi>10.1002/(SICI)1096-9101(1997)20:3<310::AID-LSM10>3.0.CO;2-H</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8092 |
ispartof | Lasers in surgery and medicine, 1997, Vol.20 (3), p.310-318 |
issn | 0196-8092 1096-9101 |
language | eng |
recordid | cdi_proquest_miscellaneous_78970748 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals anisotropic optical properties of tissue Anisotropy Arrhenius Biological and medical sciences Biothermics. Biomagnetism. Bioelectricity Birefringence Collagen - ultrastructure dynamic changes in optical properties enthalpy entropy first-order kinetic reaction Fundamental and applied biological sciences. Psychology Hot Temperature Microscopy, Polarization polarized light rat tail tendon Rats Rats, Sprague-Dawley Tail Tendons - ultrastructure Tissues, organs and organisms biophysics |
title | Quantitative measurements of linear birefringence during heating of native collagen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20measurements%20of%20linear%20birefringence%20during%20heating%20of%20native%20collagen&rft.jtitle=Lasers%20in%20surgery%20and%20medicine&rft.au=Maitland,%20Duncan%20J.&rft.date=1997&rft.volume=20&rft.issue=3&rft.spage=310&rft.epage=318&rft.pages=310-318&rft.issn=0196-8092&rft.eissn=1096-9101&rft.coden=LSMEDI&rft_id=info:doi/10.1002/(SICI)1096-9101(1997)20:3%3C310::AID-LSM10%3E3.0.CO;2-H&rft_dat=%3Cproquest_cross%3E78970748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78970748&rft_id=info:pmid/9138260&rfr_iscdi=true |