Quantitative measurements of linear birefringence during heating of native collagen

Background and Objective Linear birefringence is an anisotropic property of rat tail tendon, which is largely composed of collagen. Our goal is to show that the dynamic range and sensitivity of the linear birefringence loss of collagen during heating are sufficient for kinetic modeling of the reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in surgery and medicine 1997, Vol.20 (3), p.310-318
Hauptverfasser: Maitland, Duncan J., Walsh Jr, Joseph T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 3
container_start_page 310
container_title Lasers in surgery and medicine
container_volume 20
creator Maitland, Duncan J.
Walsh Jr, Joseph T.
description Background and Objective Linear birefringence is an anisotropic property of rat tail tendon, which is largely composed of collagen. Our goal is to show that the dynamic range and sensitivity of the linear birefringence loss of collagen during heating are sufficient for kinetic modeling of the reaction. Study Design/ Materials and Methods: The linear birefringence loss was quantified for tendon denatured via both a heated‐isotonic‐saline bath and a heated stage. All measurements were made with a polarizing transmission microscope equipped with a Berek compensator. Results The data show that the loss of linear birefringence is a first‐order kinetic reaction. The native rat tail tendon birefringence, Δn = 3.0 ± 0.6 × 10−3 (mean ± std. err.), is lost after denaturation occurs (Δn = 0). Application of the Arrhenius equation to the linear birefringence data yields the activation energy (Ea = 89 ± 1 kcal/mole), pre‐exponential coefficient (A = e130±1 s−1), enthalpy (ΔH = 88 ± 1 kcal/mole) and entropy (ΔS = 197 ± 2 cal/°K·mole). Conclusion This study shows that dynamic changes in linear birefringence can be used to monitor thermally induced changes in collagen. Lasers Surg. Medicine 20:310–318, 1997. © 1997 Wiley‐Liss, Inc.
doi_str_mv 10.1002/(SICI)1096-9101(1997)20:3<310::AID-LSM10>3.0.CO;2-H
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78970748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78970748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4920-2f6a9f7d6939f96d8e7321b9ff1fe54b4013ffe65d292dc1bd96b5287f24b4ef3</originalsourceid><addsrcrecordid>eNp9kF9v0zAUxS0EGmXwEZDygND2kHJtN3HcIaStg7WoUE0dKm9XTmKDIX-GnQz27XFI1RcQT_fq3nOPj3-EnFGYUgD26mS7WqxOKcg0lhToCZVSnDKY89ecwnx-vrqM19sPFN7wKUwXmzMWLx-QyUH_kEyAhj4DyR6TJ95_AwDOQByRI0l5xlKYkO11r5rOdqqzdzqqtfK907VuOh-1Jqpso5WLcuu0cbb5optCR2U_tNFXHW5CDbJmvC7aqlJB85Q8Mqry-tm-HpNP797eLJbxenO1Wpyv42ImGcTMpEoaUaaSSyPTMtOCM5pLY6jRySyfAeXG6DQpmWRlQfNSpnnCMmFYWGrDj8nL0ffWtT967TusrS90CNHotvcoMilAzLIg3I7CwrXeh7_grbO1cvdIAQfUiANqHNDhgA4H1MgAOQbUiAE1_kEdBoCLDTJcBtfn--f7vNblwXPPNuxf7PfKF6oyTjWF9QcZS5MsoSzIbkbZT1vp-7-S_TfYv3KNg2Abj7bWd_rXwVa575gKLhLcfbzCi8vP2fvrXYo7_hu_JrWp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78970748</pqid></control><display><type>article</type><title>Quantitative measurements of linear birefringence during heating of native collagen</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Maitland, Duncan J. ; Walsh Jr, Joseph T.</creator><creatorcontrib>Maitland, Duncan J. ; Walsh Jr, Joseph T.</creatorcontrib><description>Background and Objective Linear birefringence is an anisotropic property of rat tail tendon, which is largely composed of collagen. Our goal is to show that the dynamic range and sensitivity of the linear birefringence loss of collagen during heating are sufficient for kinetic modeling of the reaction. Study Design/ Materials and Methods: The linear birefringence loss was quantified for tendon denatured via both a heated‐isotonic‐saline bath and a heated stage. All measurements were made with a polarizing transmission microscope equipped with a Berek compensator. Results The data show that the loss of linear birefringence is a first‐order kinetic reaction. The native rat tail tendon birefringence, Δn = 3.0 ± 0.6 × 10−3 (mean ± std. err.), is lost after denaturation occurs (Δn = 0). Application of the Arrhenius equation to the linear birefringence data yields the activation energy (Ea = 89 ± 1 kcal/mole), pre‐exponential coefficient (A = e130±1 s−1), enthalpy (ΔH = 88 ± 1 kcal/mole) and entropy (ΔS = 197 ± 2 cal/°K·mole). Conclusion This study shows that dynamic changes in linear birefringence can be used to monitor thermally induced changes in collagen. Lasers Surg. Medicine 20:310–318, 1997. © 1997 Wiley‐Liss, Inc.</description><identifier>ISSN: 0196-8092</identifier><identifier>EISSN: 1096-9101</identifier><identifier>DOI: 10.1002/(SICI)1096-9101(1997)20:3&lt;310::AID-LSM10&gt;3.0.CO;2-H</identifier><identifier>PMID: 9138260</identifier><identifier>CODEN: LSMEDI</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; anisotropic optical properties of tissue ; Anisotropy ; Arrhenius ; Biological and medical sciences ; Biothermics. Biomagnetism. Bioelectricity ; Birefringence ; Collagen - ultrastructure ; dynamic changes in optical properties ; enthalpy ; entropy ; first-order kinetic reaction ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; Microscopy, Polarization ; polarized light ; rat tail tendon ; Rats ; Rats, Sprague-Dawley ; Tail ; Tendons - ultrastructure ; Tissues, organs and organisms biophysics</subject><ispartof>Lasers in surgery and medicine, 1997, Vol.20 (3), p.310-318</ispartof><rights>Copyright © 1997 Wiley‐Liss, Inc.</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4920-2f6a9f7d6939f96d8e7321b9ff1fe54b4013ffe65d292dc1bd96b5287f24b4ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291096-9101%281997%2920%3A3%3C310%3A%3AAID-LSM10%3E3.0.CO%3B2-H$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291096-9101%281997%2920%3A3%3C310%3A%3AAID-LSM10%3E3.0.CO%3B2-H$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2658512$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9138260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maitland, Duncan J.</creatorcontrib><creatorcontrib>Walsh Jr, Joseph T.</creatorcontrib><title>Quantitative measurements of linear birefringence during heating of native collagen</title><title>Lasers in surgery and medicine</title><addtitle>Lasers Surg. Med</addtitle><description>Background and Objective Linear birefringence is an anisotropic property of rat tail tendon, which is largely composed of collagen. Our goal is to show that the dynamic range and sensitivity of the linear birefringence loss of collagen during heating are sufficient for kinetic modeling of the reaction. Study Design/ Materials and Methods: The linear birefringence loss was quantified for tendon denatured via both a heated‐isotonic‐saline bath and a heated stage. All measurements were made with a polarizing transmission microscope equipped with a Berek compensator. Results The data show that the loss of linear birefringence is a first‐order kinetic reaction. The native rat tail tendon birefringence, Δn = 3.0 ± 0.6 × 10−3 (mean ± std. err.), is lost after denaturation occurs (Δn = 0). Application of the Arrhenius equation to the linear birefringence data yields the activation energy (Ea = 89 ± 1 kcal/mole), pre‐exponential coefficient (A = e130±1 s−1), enthalpy (ΔH = 88 ± 1 kcal/mole) and entropy (ΔS = 197 ± 2 cal/°K·mole). Conclusion This study shows that dynamic changes in linear birefringence can be used to monitor thermally induced changes in collagen. Lasers Surg. Medicine 20:310–318, 1997. © 1997 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>anisotropic optical properties of tissue</subject><subject>Anisotropy</subject><subject>Arrhenius</subject><subject>Biological and medical sciences</subject><subject>Biothermics. Biomagnetism. Bioelectricity</subject><subject>Birefringence</subject><subject>Collagen - ultrastructure</subject><subject>dynamic changes in optical properties</subject><subject>enthalpy</subject><subject>entropy</subject><subject>first-order kinetic reaction</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>Microscopy, Polarization</subject><subject>polarized light</subject><subject>rat tail tendon</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tail</subject><subject>Tendons - ultrastructure</subject><subject>Tissues, organs and organisms biophysics</subject><issn>0196-8092</issn><issn>1096-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF9v0zAUxS0EGmXwEZDygND2kHJtN3HcIaStg7WoUE0dKm9XTmKDIX-GnQz27XFI1RcQT_fq3nOPj3-EnFGYUgD26mS7WqxOKcg0lhToCZVSnDKY89ecwnx-vrqM19sPFN7wKUwXmzMWLx-QyUH_kEyAhj4DyR6TJ95_AwDOQByRI0l5xlKYkO11r5rOdqqzdzqqtfK907VuOh-1Jqpso5WLcuu0cbb5optCR2U_tNFXHW5CDbJmvC7aqlJB85Q8Mqry-tm-HpNP797eLJbxenO1Wpyv42ImGcTMpEoaUaaSSyPTMtOCM5pLY6jRySyfAeXG6DQpmWRlQfNSpnnCMmFYWGrDj8nL0ffWtT967TusrS90CNHotvcoMilAzLIg3I7CwrXeh7_grbO1cvdIAQfUiANqHNDhgA4H1MgAOQbUiAE1_kEdBoCLDTJcBtfn--f7vNblwXPPNuxf7PfKF6oyTjWF9QcZS5MsoSzIbkbZT1vp-7-S_TfYv3KNg2Abj7bWd_rXwVa575gKLhLcfbzCi8vP2fvrXYo7_hu_JrWp</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Maitland, Duncan J.</creator><creator>Walsh Jr, Joseph T.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>1997</creationdate><title>Quantitative measurements of linear birefringence during heating of native collagen</title><author>Maitland, Duncan J. ; Walsh Jr, Joseph T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4920-2f6a9f7d6939f96d8e7321b9ff1fe54b4013ffe65d292dc1bd96b5287f24b4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Animals</topic><topic>anisotropic optical properties of tissue</topic><topic>Anisotropy</topic><topic>Arrhenius</topic><topic>Biological and medical sciences</topic><topic>Biothermics. Biomagnetism. Bioelectricity</topic><topic>Birefringence</topic><topic>Collagen - ultrastructure</topic><topic>dynamic changes in optical properties</topic><topic>enthalpy</topic><topic>entropy</topic><topic>first-order kinetic reaction</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>Microscopy, Polarization</topic><topic>polarized light</topic><topic>rat tail tendon</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tail</topic><topic>Tendons - ultrastructure</topic><topic>Tissues, organs and organisms biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maitland, Duncan J.</creatorcontrib><creatorcontrib>Walsh Jr, Joseph T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lasers in surgery and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maitland, Duncan J.</au><au>Walsh Jr, Joseph T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative measurements of linear birefringence during heating of native collagen</atitle><jtitle>Lasers in surgery and medicine</jtitle><addtitle>Lasers Surg. Med</addtitle><date>1997</date><risdate>1997</risdate><volume>20</volume><issue>3</issue><spage>310</spage><epage>318</epage><pages>310-318</pages><issn>0196-8092</issn><eissn>1096-9101</eissn><coden>LSMEDI</coden><abstract>Background and Objective Linear birefringence is an anisotropic property of rat tail tendon, which is largely composed of collagen. Our goal is to show that the dynamic range and sensitivity of the linear birefringence loss of collagen during heating are sufficient for kinetic modeling of the reaction. Study Design/ Materials and Methods: The linear birefringence loss was quantified for tendon denatured via both a heated‐isotonic‐saline bath and a heated stage. All measurements were made with a polarizing transmission microscope equipped with a Berek compensator. Results The data show that the loss of linear birefringence is a first‐order kinetic reaction. The native rat tail tendon birefringence, Δn = 3.0 ± 0.6 × 10−3 (mean ± std. err.), is lost after denaturation occurs (Δn = 0). Application of the Arrhenius equation to the linear birefringence data yields the activation energy (Ea = 89 ± 1 kcal/mole), pre‐exponential coefficient (A = e130±1 s−1), enthalpy (ΔH = 88 ± 1 kcal/mole) and entropy (ΔS = 197 ± 2 cal/°K·mole). Conclusion This study shows that dynamic changes in linear birefringence can be used to monitor thermally induced changes in collagen. Lasers Surg. Medicine 20:310–318, 1997. © 1997 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>9138260</pmid><doi>10.1002/(SICI)1096-9101(1997)20:3&lt;310::AID-LSM10&gt;3.0.CO;2-H</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8092
ispartof Lasers in surgery and medicine, 1997, Vol.20 (3), p.310-318
issn 0196-8092
1096-9101
language eng
recordid cdi_proquest_miscellaneous_78970748
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
anisotropic optical properties of tissue
Anisotropy
Arrhenius
Biological and medical sciences
Biothermics. Biomagnetism. Bioelectricity
Birefringence
Collagen - ultrastructure
dynamic changes in optical properties
enthalpy
entropy
first-order kinetic reaction
Fundamental and applied biological sciences. Psychology
Hot Temperature
Microscopy, Polarization
polarized light
rat tail tendon
Rats
Rats, Sprague-Dawley
Tail
Tendons - ultrastructure
Tissues, organs and organisms biophysics
title Quantitative measurements of linear birefringence during heating of native collagen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20measurements%20of%20linear%20birefringence%20during%20heating%20of%20native%20collagen&rft.jtitle=Lasers%20in%20surgery%20and%20medicine&rft.au=Maitland,%20Duncan%20J.&rft.date=1997&rft.volume=20&rft.issue=3&rft.spage=310&rft.epage=318&rft.pages=310-318&rft.issn=0196-8092&rft.eissn=1096-9101&rft.coden=LSMEDI&rft_id=info:doi/10.1002/(SICI)1096-9101(1997)20:3%3C310::AID-LSM10%3E3.0.CO;2-H&rft_dat=%3Cproquest_cross%3E78970748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78970748&rft_id=info:pmid/9138260&rfr_iscdi=true