Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae
In Saccharomyces cerevisiae, the pathway of 4‐aminobutyric acid catabolism, for use as a nitrogen source, involves a specific permease (encoded by the UGA4 gene) and two enzymes (encoded by the UGA1 and UGA2 genes, respectively). The synthesis of these proteins is induced by 4‐aminobutyrate. It also...
Gespeichert in:
Veröffentlicht in: | European journal of biochemistry 1989-05, Vol.181 (2), p.357-361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 2 |
container_start_page | 357 |
container_title | European journal of biochemistry |
container_volume | 181 |
creator | Vissers, S Andre, B Muyldermans, F Grenson, M |
description | In Saccharomyces cerevisiae, the pathway of 4‐aminobutyric acid catabolism, for use as a nitrogen source, involves a specific permease (encoded by the UGA4 gene) and two enzymes (encoded by the UGA1 and UGA2 genes, respectively). The synthesis of these proteins is induced by 4‐aminobutyrate. It also requires the product of the UGA3 gene. Here, we describe four additional regulatory mutations which provide evidence for the existence of both positive and negative regulatory elements which control the final expression of the UGA4 gene. Some of them simultaneously control the expression of the UGA1 and UGA2 genes. Three classes of mutant with a constitutive 4‐aminobutyrate‐specific permease have been isolated. (a) Recessive mutations in the UGA43 gene suggest that the product of the UGA43 gene behaves like a trans‐acting negative regulator of UGA4 gene expression. (b) The semi‐dominant mutation (uga11), closely linked to the UGA4 gene, might affect the receptor of the UGA43 gene product. In these two classes of mutant, only the permease is constitutive. (3) The uga81 mutation, closely linked to the UGA3 gene. makes the whole UGA regulon constitutive.
On the other hand, recessive mutations at the UGA3 gene locus lead to non‐inducibility of the UGA regulon. Hence the UGA35 gene product behaves like a second trans‐acting positive regulator in addition to UGA3. |
doi_str_mv | 10.1111/j.1432-1033.1989.tb14732.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78956691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78956691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5677-58e32853342f55cf380506540a58de6834d7607b66af55906963d739d576fdd03</originalsourceid><addsrcrecordid>eNqVkd-KEzEUxgdR1rr6AoIQRLybmkz-TMabZV12V2FBofY6pMmZbspMUpOZtX0nH9JMW3or5ibkfL_znXC-onhP8Jzk82kzJ4xWJcGUzkkjm_mwIqym1Xz3rJidpefFDGPCyqrh4mXxKqUNxlg0or4oLirBqazkrPjzIyQ3uCdA2lvkYa0PjwjrsdNDiHsEHfTgh4RM8EMMHRoeAcFuGyElFzwK7aGyvL9maA0eMmedX6M2xIPgvB2NW3WAWKl758NqHPbRmVIbZ8u0BeNaZ9AWYg86TTxaaGMedQz93kCeCxGeXHIaXhcvWt0leHO6L4vl3e3Pm6_lw_f7bzfXD6Xhoq5LLoFWklPKqpZz01KJORacYc2lBSEps7XA9UoInfVm2gm1NW0sr0VrLaaXxcej7zaGXyOkQfUuGeg67SGMSdUyr1Q05J8g4YwQWjUZ_HwETQwpRWjVNrpex70iWE2Zqo2aglNTcGrKVJ0yVbvc_O40ZVz1YM-tpxCz_uGk62R010btjUtnrK4kY6TO2NUR--062P_HB9Td7ZcF5ZPD26NDq4PS65iHLBeyIULmrr-p98is</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15411329</pqid></control><display><type>article</type><title>Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Vissers, S ; Andre, B ; Muyldermans, F ; Grenson, M</creator><creatorcontrib>Vissers, S ; Andre, B ; Muyldermans, F ; Grenson, M</creatorcontrib><description>In Saccharomyces cerevisiae, the pathway of 4‐aminobutyric acid catabolism, for use as a nitrogen source, involves a specific permease (encoded by the UGA4 gene) and two enzymes (encoded by the UGA1 and UGA2 genes, respectively). The synthesis of these proteins is induced by 4‐aminobutyrate. It also requires the product of the UGA3 gene. Here, we describe four additional regulatory mutations which provide evidence for the existence of both positive and negative regulatory elements which control the final expression of the UGA4 gene. Some of them simultaneously control the expression of the UGA1 and UGA2 genes. Three classes of mutant with a constitutive 4‐aminobutyrate‐specific permease have been isolated. (a) Recessive mutations in the UGA43 gene suggest that the product of the UGA43 gene behaves like a trans‐acting negative regulator of UGA4 gene expression. (b) The semi‐dominant mutation (uga11), closely linked to the UGA4 gene, might affect the receptor of the UGA43 gene product. In these two classes of mutant, only the permease is constitutive. (3) The uga81 mutation, closely linked to the UGA3 gene. makes the whole UGA regulon constitutive.
On the other hand, recessive mutations at the UGA3 gene locus lead to non‐inducibility of the UGA regulon. Hence the UGA35 gene product behaves like a second trans‐acting positive regulator in addition to UGA3.</description><identifier>ISSN: 0014-2956</identifier><identifier>EISSN: 1432-1033</identifier><identifier>DOI: 10.1111/j.1432-1033.1989.tb14732.x</identifier><identifier>PMID: 2653828</identifier><identifier>CODEN: EJBCAI</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>ACIDE BUTYRIQUE ; ACIDO BUTIRICO ; ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; Biological and medical sciences ; BUTYRIC ACID ; CODE GENETIQUE ; CODIGO GENETICO ; Enzyme Induction ; ENZYMIC ACTIVITY ; Fundamental and applied biological sciences. Psychology ; GABA Plasma Membrane Transport Proteins ; GENE ; Gene expression ; Gene Expression Regulation ; GENES ; Genes, Fungal ; Genes, Regulator ; GENETIC CODE ; Kinetics ; Membrane Transport Proteins - biosynthesis ; Membrane Transport Proteins - genetics ; Molecular and cellular biology ; Molecular genetics ; MUTANT ; MUTANTES ; MUTANTS ; Mutation ; Organic Anion Transporters ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins</subject><ispartof>European journal of biochemistry, 1989-05, Vol.181 (2), p.357-361</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5677-58e32853342f55cf380506540a58de6834d7607b66af55906963d739d576fdd03</citedby><cites>FETCH-LOGICAL-c5677-58e32853342f55cf380506540a58de6834d7607b66af55906963d739d576fdd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7284417$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2653828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vissers, S</creatorcontrib><creatorcontrib>Andre, B</creatorcontrib><creatorcontrib>Muyldermans, F</creatorcontrib><creatorcontrib>Grenson, M</creatorcontrib><title>Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae</title><title>European journal of biochemistry</title><addtitle>Eur J Biochem</addtitle><description>In Saccharomyces cerevisiae, the pathway of 4‐aminobutyric acid catabolism, for use as a nitrogen source, involves a specific permease (encoded by the UGA4 gene) and two enzymes (encoded by the UGA1 and UGA2 genes, respectively). The synthesis of these proteins is induced by 4‐aminobutyrate. It also requires the product of the UGA3 gene. Here, we describe four additional regulatory mutations which provide evidence for the existence of both positive and negative regulatory elements which control the final expression of the UGA4 gene. Some of them simultaneously control the expression of the UGA1 and UGA2 genes. Three classes of mutant with a constitutive 4‐aminobutyrate‐specific permease have been isolated. (a) Recessive mutations in the UGA43 gene suggest that the product of the UGA43 gene behaves like a trans‐acting negative regulator of UGA4 gene expression. (b) The semi‐dominant mutation (uga11), closely linked to the UGA4 gene, might affect the receptor of the UGA43 gene product. In these two classes of mutant, only the permease is constitutive. (3) The uga81 mutation, closely linked to the UGA3 gene. makes the whole UGA regulon constitutive.
On the other hand, recessive mutations at the UGA3 gene locus lead to non‐inducibility of the UGA regulon. Hence the UGA35 gene product behaves like a second trans‐acting positive regulator in addition to UGA3.</description><subject>ACIDE BUTYRIQUE</subject><subject>ACIDO BUTIRICO</subject><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>Biological and medical sciences</subject><subject>BUTYRIC ACID</subject><subject>CODE GENETIQUE</subject><subject>CODIGO GENETICO</subject><subject>Enzyme Induction</subject><subject>ENZYMIC ACTIVITY</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABA Plasma Membrane Transport Proteins</subject><subject>GENE</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>GENES</subject><subject>Genes, Fungal</subject><subject>Genes, Regulator</subject><subject>GENETIC CODE</subject><subject>Kinetics</subject><subject>Membrane Transport Proteins - biosynthesis</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>Organic Anion Transporters</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><issn>0014-2956</issn><issn>1432-1033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkd-KEzEUxgdR1rr6AoIQRLybmkz-TMabZV12V2FBofY6pMmZbspMUpOZtX0nH9JMW3or5ibkfL_znXC-onhP8Jzk82kzJ4xWJcGUzkkjm_mwIqym1Xz3rJidpefFDGPCyqrh4mXxKqUNxlg0or4oLirBqazkrPjzIyQ3uCdA2lvkYa0PjwjrsdNDiHsEHfTgh4RM8EMMHRoeAcFuGyElFzwK7aGyvL9maA0eMmedX6M2xIPgvB2NW3WAWKl758NqHPbRmVIbZ8u0BeNaZ9AWYg86TTxaaGMedQz93kCeCxGeXHIaXhcvWt0leHO6L4vl3e3Pm6_lw_f7bzfXD6Xhoq5LLoFWklPKqpZz01KJORacYc2lBSEps7XA9UoInfVm2gm1NW0sr0VrLaaXxcej7zaGXyOkQfUuGeg67SGMSdUyr1Q05J8g4YwQWjUZ_HwETQwpRWjVNrpex70iWE2Zqo2aglNTcGrKVJ0yVbvc_O40ZVz1YM-tpxCz_uGk62R010btjUtnrK4kY6TO2NUR--062P_HB9Td7ZcF5ZPD26NDq4PS65iHLBeyIULmrr-p98is</recordid><startdate>198905</startdate><enddate>198905</enddate><creator>Vissers, S</creator><creator>Andre, B</creator><creator>Muyldermans, F</creator><creator>Grenson, M</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>198905</creationdate><title>Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae</title><author>Vissers, S ; Andre, B ; Muyldermans, F ; Grenson, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5677-58e32853342f55cf380506540a58de6834d7607b66af55906963d739d576fdd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>ACIDE BUTYRIQUE</topic><topic>ACIDO BUTIRICO</topic><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>Biological and medical sciences</topic><topic>BUTYRIC ACID</topic><topic>CODE GENETIQUE</topic><topic>CODIGO GENETICO</topic><topic>Enzyme Induction</topic><topic>ENZYMIC ACTIVITY</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABA Plasma Membrane Transport Proteins</topic><topic>GENE</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>GENES</topic><topic>Genes, Fungal</topic><topic>Genes, Regulator</topic><topic>GENETIC CODE</topic><topic>Kinetics</topic><topic>Membrane Transport Proteins - biosynthesis</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>Organic Anion Transporters</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vissers, S</creatorcontrib><creatorcontrib>Andre, B</creatorcontrib><creatorcontrib>Muyldermans, F</creatorcontrib><creatorcontrib>Grenson, M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vissers, S</au><au>Andre, B</au><au>Muyldermans, F</au><au>Grenson, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae</atitle><jtitle>European journal of biochemistry</jtitle><addtitle>Eur J Biochem</addtitle><date>1989-05</date><risdate>1989</risdate><volume>181</volume><issue>2</issue><spage>357</spage><epage>361</epage><pages>357-361</pages><issn>0014-2956</issn><eissn>1432-1033</eissn><coden>EJBCAI</coden><abstract>In Saccharomyces cerevisiae, the pathway of 4‐aminobutyric acid catabolism, for use as a nitrogen source, involves a specific permease (encoded by the UGA4 gene) and two enzymes (encoded by the UGA1 and UGA2 genes, respectively). The synthesis of these proteins is induced by 4‐aminobutyrate. It also requires the product of the UGA3 gene. Here, we describe four additional regulatory mutations which provide evidence for the existence of both positive and negative regulatory elements which control the final expression of the UGA4 gene. Some of them simultaneously control the expression of the UGA1 and UGA2 genes. Three classes of mutant with a constitutive 4‐aminobutyrate‐specific permease have been isolated. (a) Recessive mutations in the UGA43 gene suggest that the product of the UGA43 gene behaves like a trans‐acting negative regulator of UGA4 gene expression. (b) The semi‐dominant mutation (uga11), closely linked to the UGA4 gene, might affect the receptor of the UGA43 gene product. In these two classes of mutant, only the permease is constitutive. (3) The uga81 mutation, closely linked to the UGA3 gene. makes the whole UGA regulon constitutive.
On the other hand, recessive mutations at the UGA3 gene locus lead to non‐inducibility of the UGA regulon. Hence the UGA35 gene product behaves like a second trans‐acting positive regulator in addition to UGA3.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>2653828</pmid><doi>10.1111/j.1432-1033.1989.tb14732.x</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-2956 |
ispartof | European journal of biochemistry, 1989-05, Vol.181 (2), p.357-361 |
issn | 0014-2956 1432-1033 |
language | eng |
recordid | cdi_proquest_miscellaneous_78956691 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | ACIDE BUTYRIQUE ACIDO BUTIRICO ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE Biological and medical sciences BUTYRIC ACID CODE GENETIQUE CODIGO GENETICO Enzyme Induction ENZYMIC ACTIVITY Fundamental and applied biological sciences. Psychology GABA Plasma Membrane Transport Proteins GENE Gene expression Gene Expression Regulation GENES Genes, Fungal Genes, Regulator GENETIC CODE Kinetics Membrane Transport Proteins - biosynthesis Membrane Transport Proteins - genetics Molecular and cellular biology Molecular genetics MUTANT MUTANTES MUTANTS Mutation Organic Anion Transporters SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins |
title | Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20and%20negative%20regulatory%20elements%20control%20the%20expression%20of%20the%20UGA4%20gene%20coding%20for%20the%20inducible%204-aminobutyric-acid-specific%20permease%20in%20Saccharomyces%20cerevisiae&rft.jtitle=European%20journal%20of%20biochemistry&rft.au=Vissers,%20S&rft.date=1989-05&rft.volume=181&rft.issue=2&rft.spage=357&rft.epage=361&rft.pages=357-361&rft.issn=0014-2956&rft.eissn=1432-1033&rft.coden=EJBCAI&rft_id=info:doi/10.1111/j.1432-1033.1989.tb14732.x&rft_dat=%3Cproquest_cross%3E78956691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15411329&rft_id=info:pmid/2653828&rfr_iscdi=true |