Biotransformation of Mestranol to Ethinyl Estradiol In Vitro: The Role of Cytochrome P-450 2C9 and Metabolic Inhibitors

Mestranol, the estrogen component of some oral contraceptive formulations, must be demethylated to its active metabolite, 17α‐ethinyl estradiol, to produce estrogenic activity. To investigate the transformation of mestranol to ethinyl estradiol, an in vitro assay was used with human liver microsomes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical pharmacology 1997-03, Vol.37 (3), p.193-200
Hauptverfasser: Schmider, Jürgen, Greenblatt, David J., von Moltke, Lisa L., Karsov, Dmitri, Vena, Richard, Friedman, Hylar L., Shader, Richard I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 3
container_start_page 193
container_title Journal of clinical pharmacology
container_volume 37
creator Schmider, Jürgen
Greenblatt, David J.
von Moltke, Lisa L.
Karsov, Dmitri
Vena, Richard
Friedman, Hylar L.
Shader, Richard I.
description Mestranol, the estrogen component of some oral contraceptive formulations, must be demethylated to its active metabolite, 17α‐ethinyl estradiol, to produce estrogenic activity. To investigate the transformation of mestranol to ethinyl estradiol, an in vitro assay was used with human liver microsomes from four different donors. Incubation of a fixed concentration of mestranol (3 μmol/L) with varying concentrations of CYP inhibitors revealed strong inhibition of ethinyl estradiol formation by sulfaphenazole, a specific CYP2C9 inhibitor, with an average inhibitor concentration at one half of Emax (IC50) of 3.6 μmol/L (range, 1.8–8.3 μmol/L) and an average maximal inhibitory capacity (Emax) of 75% (range, 60–91%). Troleandomycin (a CYP3A3/4 inhibitor) and quinidine (a CYP2D6 inhibitor), however, produced no substantial inhibitory activity. α‐Naphthoflavone (a CYP1A1/2 inhibitor only at concentrations
doi_str_mv 10.1002/j.1552-4604.1997.tb04781.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78917152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78917152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5041-ebd2bd112b863256712e6d70bbd913d2916df7677943323d7d9871d5f64fe1ab3</originalsourceid><addsrcrecordid>eNqVkFuP1CAUxxujWcfVj2BCjPGtlUMplH3Sbca9uOrErJc3QgvNMLZlBSY78-2lmcm8-wQ5_8uBX5a9AVwAxuT9poCqIjllmBYgBC9iiymvodg9yRYn6Wm2wFhATjjGz7MXIWwwBkYrOMvOBK4FJbDIHi-ti15NoXd-VNG6CbkefTFhHroBRYeWcW2n_YCW80zbNLyZ0E8bvbtA92uDvrvBzKFmH1239m40aJXTCiPSCKQmndqiat1guxRc29ZG58PL7FmvhmBeHc_z7Men5X1znd99u7ppPt7lXYUp5KbVpNUApK1ZSSrGgRimOW5bLaDURADTPWecC1qWpNRci5qDrnpGewOqLc-zd4feB-_-btO35GhDZ4ZBTcZtg-S1AA4VScaLg7HzLgRvevng7aj8XgKWM3W5kTNaOaOVM3V5pC53Kfz6uGXbjkafokfMSX971FXo1NAntp0NJxthZU0FTrYPB9ujHcz-Px4gb5vV9XxNFfmhwoZodqcK5f9IxkteyV9fr-Tt6nNzydhvCeU_-CetbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78917152</pqid></control><display><type>article</type><title>Biotransformation of Mestranol to Ethinyl Estradiol In Vitro: The Role of Cytochrome P-450 2C9 and Metabolic Inhibitors</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schmider, Jürgen ; Greenblatt, David J. ; von Moltke, Lisa L. ; Karsov, Dmitri ; Vena, Richard ; Friedman, Hylar L. ; Shader, Richard I.</creator><creatorcontrib>Schmider, Jürgen ; Greenblatt, David J. ; von Moltke, Lisa L. ; Karsov, Dmitri ; Vena, Richard ; Friedman, Hylar L. ; Shader, Richard I.</creatorcontrib><description>Mestranol, the estrogen component of some oral contraceptive formulations, must be demethylated to its active metabolite, 17α‐ethinyl estradiol, to produce estrogenic activity. To investigate the transformation of mestranol to ethinyl estradiol, an in vitro assay was used with human liver microsomes from four different donors. Incubation of a fixed concentration of mestranol (3 μmol/L) with varying concentrations of CYP inhibitors revealed strong inhibition of ethinyl estradiol formation by sulfaphenazole, a specific CYP2C9 inhibitor, with an average inhibitor concentration at one half of Emax (IC50) of 3.6 μmol/L (range, 1.8–8.3 μmol/L) and an average maximal inhibitory capacity (Emax) of 75% (range, 60–91%). Troleandomycin (a CYP3A3/4 inhibitor) and quinidine (a CYP2D6 inhibitor), however, produced no substantial inhibitory activity. α‐Naphthoflavone (a CYP1A1/2 inhibitor only at concentrations &lt;2 μmol/L and a CYP2C9 inhibitor at higher concentrations) had a weak inhibitory effect on ethinyl estradiol formation (&lt;20% decrease in mestranol demethylation activity). Of the three antifungal azoles tested, miconazole strongly inhibited mestranol demethylation, with an average IC50 of 1.5 μmol/L (range, 0.7–3.2 μmol/L) and an average Emax of 90% (range, 77–100%), whereas fluconazole displayed relatively weak inhibition only at the highest concentration of 50 μmol/L (mean reduction in demethylation activity was 29%). Itraconazole produced no meaningful inhibition. Strong inhibition of ethinyl estradiol formation by sulfaphenazole suggests a major contribution of CYP2C9 to this reaction.</description><identifier>ISSN: 0091-2700</identifier><identifier>EISSN: 1552-4604</identifier><identifier>DOI: 10.1002/j.1552-4604.1997.tb04781.x</identifier><identifier>PMID: 9089421</identifier><identifier>CODEN: JCPCBR</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult ; Antifungal Agents - pharmacokinetics ; Biological and medical sciences ; Biotransformation ; Cells, Cultured ; Chromatography, High Pressure Liquid ; Cytochrome P-450 Enzyme Inhibitors ; Cytochrome P-450 Enzyme System - physiology ; Estradiol Congeners - metabolism ; Estradiol Congeners - pharmacokinetics ; Ethinyl Estradiol - metabolism ; Female ; Fluconazole - pharmacokinetics ; Genital system. Reproduction ; Humans ; Itraconazole - pharmacokinetics ; Ketoconazole - pharmacokinetics ; Medical sciences ; Mestranol - metabolism ; Mestranol - pharmacokinetics ; Microsomes, Liver - enzymology ; Microsomes, Liver - physiology ; Pharmacology. Drug treatments</subject><ispartof>Journal of clinical pharmacology, 1997-03, Vol.37 (3), p.193-200</ispartof><rights>1997 American College of Clinical Pharmacology</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5041-ebd2bd112b863256712e6d70bbd913d2916df7677943323d7d9871d5f64fe1ab3</citedby><cites>FETCH-LOGICAL-c5041-ebd2bd112b863256712e6d70bbd913d2916df7677943323d7d9871d5f64fe1ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fj.1552-4604.1997.tb04781.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fj.1552-4604.1997.tb04781.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2638490$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9089421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmider, Jürgen</creatorcontrib><creatorcontrib>Greenblatt, David J.</creatorcontrib><creatorcontrib>von Moltke, Lisa L.</creatorcontrib><creatorcontrib>Karsov, Dmitri</creatorcontrib><creatorcontrib>Vena, Richard</creatorcontrib><creatorcontrib>Friedman, Hylar L.</creatorcontrib><creatorcontrib>Shader, Richard I.</creatorcontrib><title>Biotransformation of Mestranol to Ethinyl Estradiol In Vitro: The Role of Cytochrome P-450 2C9 and Metabolic Inhibitors</title><title>Journal of clinical pharmacology</title><addtitle>J Clin Pharmacol</addtitle><description>Mestranol, the estrogen component of some oral contraceptive formulations, must be demethylated to its active metabolite, 17α‐ethinyl estradiol, to produce estrogenic activity. To investigate the transformation of mestranol to ethinyl estradiol, an in vitro assay was used with human liver microsomes from four different donors. Incubation of a fixed concentration of mestranol (3 μmol/L) with varying concentrations of CYP inhibitors revealed strong inhibition of ethinyl estradiol formation by sulfaphenazole, a specific CYP2C9 inhibitor, with an average inhibitor concentration at one half of Emax (IC50) of 3.6 μmol/L (range, 1.8–8.3 μmol/L) and an average maximal inhibitory capacity (Emax) of 75% (range, 60–91%). Troleandomycin (a CYP3A3/4 inhibitor) and quinidine (a CYP2D6 inhibitor), however, produced no substantial inhibitory activity. α‐Naphthoflavone (a CYP1A1/2 inhibitor only at concentrations &lt;2 μmol/L and a CYP2C9 inhibitor at higher concentrations) had a weak inhibitory effect on ethinyl estradiol formation (&lt;20% decrease in mestranol demethylation activity). Of the three antifungal azoles tested, miconazole strongly inhibited mestranol demethylation, with an average IC50 of 1.5 μmol/L (range, 0.7–3.2 μmol/L) and an average Emax of 90% (range, 77–100%), whereas fluconazole displayed relatively weak inhibition only at the highest concentration of 50 μmol/L (mean reduction in demethylation activity was 29%). Itraconazole produced no meaningful inhibition. Strong inhibition of ethinyl estradiol formation by sulfaphenazole suggests a major contribution of CYP2C9 to this reaction.</description><subject>Adult</subject><subject>Antifungal Agents - pharmacokinetics</subject><subject>Biological and medical sciences</subject><subject>Biotransformation</subject><subject>Cells, Cultured</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Cytochrome P-450 Enzyme Inhibitors</subject><subject>Cytochrome P-450 Enzyme System - physiology</subject><subject>Estradiol Congeners - metabolism</subject><subject>Estradiol Congeners - pharmacokinetics</subject><subject>Ethinyl Estradiol - metabolism</subject><subject>Female</subject><subject>Fluconazole - pharmacokinetics</subject><subject>Genital system. Reproduction</subject><subject>Humans</subject><subject>Itraconazole - pharmacokinetics</subject><subject>Ketoconazole - pharmacokinetics</subject><subject>Medical sciences</subject><subject>Mestranol - metabolism</subject><subject>Mestranol - pharmacokinetics</subject><subject>Microsomes, Liver - enzymology</subject><subject>Microsomes, Liver - physiology</subject><subject>Pharmacology. Drug treatments</subject><issn>0091-2700</issn><issn>1552-4604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkFuP1CAUxxujWcfVj2BCjPGtlUMplH3Sbca9uOrErJc3QgvNMLZlBSY78-2lmcm8-wQ5_8uBX5a9AVwAxuT9poCqIjllmBYgBC9iiymvodg9yRYn6Wm2wFhATjjGz7MXIWwwBkYrOMvOBK4FJbDIHi-ti15NoXd-VNG6CbkefTFhHroBRYeWcW2n_YCW80zbNLyZ0E8bvbtA92uDvrvBzKFmH1239m40aJXTCiPSCKQmndqiat1guxRc29ZG58PL7FmvhmBeHc_z7Men5X1znd99u7ppPt7lXYUp5KbVpNUApK1ZSSrGgRimOW5bLaDURADTPWecC1qWpNRci5qDrnpGewOqLc-zd4feB-_-btO35GhDZ4ZBTcZtg-S1AA4VScaLg7HzLgRvevng7aj8XgKWM3W5kTNaOaOVM3V5pC53Kfz6uGXbjkafokfMSX971FXo1NAntp0NJxthZU0FTrYPB9ujHcz-Px4gb5vV9XxNFfmhwoZodqcK5f9IxkteyV9fr-Tt6nNzydhvCeU_-CetbA</recordid><startdate>199703</startdate><enddate>199703</enddate><creator>Schmider, Jürgen</creator><creator>Greenblatt, David J.</creator><creator>von Moltke, Lisa L.</creator><creator>Karsov, Dmitri</creator><creator>Vena, Richard</creator><creator>Friedman, Hylar L.</creator><creator>Shader, Richard I.</creator><general>Blackwell Publishing Ltd</general><general>Sage Science</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199703</creationdate><title>Biotransformation of Mestranol to Ethinyl Estradiol In Vitro: The Role of Cytochrome P-450 2C9 and Metabolic Inhibitors</title><author>Schmider, Jürgen ; Greenblatt, David J. ; von Moltke, Lisa L. ; Karsov, Dmitri ; Vena, Richard ; Friedman, Hylar L. ; Shader, Richard I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5041-ebd2bd112b863256712e6d70bbd913d2916df7677943323d7d9871d5f64fe1ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Adult</topic><topic>Antifungal Agents - pharmacokinetics</topic><topic>Biological and medical sciences</topic><topic>Biotransformation</topic><topic>Cells, Cultured</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Cytochrome P-450 Enzyme Inhibitors</topic><topic>Cytochrome P-450 Enzyme System - physiology</topic><topic>Estradiol Congeners - metabolism</topic><topic>Estradiol Congeners - pharmacokinetics</topic><topic>Ethinyl Estradiol - metabolism</topic><topic>Female</topic><topic>Fluconazole - pharmacokinetics</topic><topic>Genital system. Reproduction</topic><topic>Humans</topic><topic>Itraconazole - pharmacokinetics</topic><topic>Ketoconazole - pharmacokinetics</topic><topic>Medical sciences</topic><topic>Mestranol - metabolism</topic><topic>Mestranol - pharmacokinetics</topic><topic>Microsomes, Liver - enzymology</topic><topic>Microsomes, Liver - physiology</topic><topic>Pharmacology. Drug treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmider, Jürgen</creatorcontrib><creatorcontrib>Greenblatt, David J.</creatorcontrib><creatorcontrib>von Moltke, Lisa L.</creatorcontrib><creatorcontrib>Karsov, Dmitri</creatorcontrib><creatorcontrib>Vena, Richard</creatorcontrib><creatorcontrib>Friedman, Hylar L.</creatorcontrib><creatorcontrib>Shader, Richard I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmider, Jürgen</au><au>Greenblatt, David J.</au><au>von Moltke, Lisa L.</au><au>Karsov, Dmitri</au><au>Vena, Richard</au><au>Friedman, Hylar L.</au><au>Shader, Richard I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biotransformation of Mestranol to Ethinyl Estradiol In Vitro: The Role of Cytochrome P-450 2C9 and Metabolic Inhibitors</atitle><jtitle>Journal of clinical pharmacology</jtitle><addtitle>J Clin Pharmacol</addtitle><date>1997-03</date><risdate>1997</risdate><volume>37</volume><issue>3</issue><spage>193</spage><epage>200</epage><pages>193-200</pages><issn>0091-2700</issn><eissn>1552-4604</eissn><coden>JCPCBR</coden><abstract>Mestranol, the estrogen component of some oral contraceptive formulations, must be demethylated to its active metabolite, 17α‐ethinyl estradiol, to produce estrogenic activity. To investigate the transformation of mestranol to ethinyl estradiol, an in vitro assay was used with human liver microsomes from four different donors. Incubation of a fixed concentration of mestranol (3 μmol/L) with varying concentrations of CYP inhibitors revealed strong inhibition of ethinyl estradiol formation by sulfaphenazole, a specific CYP2C9 inhibitor, with an average inhibitor concentration at one half of Emax (IC50) of 3.6 μmol/L (range, 1.8–8.3 μmol/L) and an average maximal inhibitory capacity (Emax) of 75% (range, 60–91%). Troleandomycin (a CYP3A3/4 inhibitor) and quinidine (a CYP2D6 inhibitor), however, produced no substantial inhibitory activity. α‐Naphthoflavone (a CYP1A1/2 inhibitor only at concentrations &lt;2 μmol/L and a CYP2C9 inhibitor at higher concentrations) had a weak inhibitory effect on ethinyl estradiol formation (&lt;20% decrease in mestranol demethylation activity). Of the three antifungal azoles tested, miconazole strongly inhibited mestranol demethylation, with an average IC50 of 1.5 μmol/L (range, 0.7–3.2 μmol/L) and an average Emax of 90% (range, 77–100%), whereas fluconazole displayed relatively weak inhibition only at the highest concentration of 50 μmol/L (mean reduction in demethylation activity was 29%). Itraconazole produced no meaningful inhibition. Strong inhibition of ethinyl estradiol formation by sulfaphenazole suggests a major contribution of CYP2C9 to this reaction.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>9089421</pmid><doi>10.1002/j.1552-4604.1997.tb04781.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0091-2700
ispartof Journal of clinical pharmacology, 1997-03, Vol.37 (3), p.193-200
issn 0091-2700
1552-4604
language eng
recordid cdi_proquest_miscellaneous_78917152
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adult
Antifungal Agents - pharmacokinetics
Biological and medical sciences
Biotransformation
Cells, Cultured
Chromatography, High Pressure Liquid
Cytochrome P-450 Enzyme Inhibitors
Cytochrome P-450 Enzyme System - physiology
Estradiol Congeners - metabolism
Estradiol Congeners - pharmacokinetics
Ethinyl Estradiol - metabolism
Female
Fluconazole - pharmacokinetics
Genital system. Reproduction
Humans
Itraconazole - pharmacokinetics
Ketoconazole - pharmacokinetics
Medical sciences
Mestranol - metabolism
Mestranol - pharmacokinetics
Microsomes, Liver - enzymology
Microsomes, Liver - physiology
Pharmacology. Drug treatments
title Biotransformation of Mestranol to Ethinyl Estradiol In Vitro: The Role of Cytochrome P-450 2C9 and Metabolic Inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biotransformation%20of%20Mestranol%20to%20Ethinyl%20Estradiol%20In%20Vitro:%20The%20Role%20of%20Cytochrome%20P-450%202C9%20and%20Metabolic%20Inhibitors&rft.jtitle=Journal%20of%20clinical%20pharmacology&rft.au=Schmider,%20J%C3%BCrgen&rft.date=1997-03&rft.volume=37&rft.issue=3&rft.spage=193&rft.epage=200&rft.pages=193-200&rft.issn=0091-2700&rft.eissn=1552-4604&rft.coden=JCPCBR&rft_id=info:doi/10.1002/j.1552-4604.1997.tb04781.x&rft_dat=%3Cproquest_cross%3E78917152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78917152&rft_id=info:pmid/9089421&rfr_iscdi=true