Folding-dependent binding of thyrotropin (TSH) and TSH receptor autoantibodies to the murine TSH receptor ectodomain

The mouse TSH receptor ectodomain (mTSHR-ecd) was amplified from murine thyroid complementary DNA and ligated into the pAcGP67B insect cell vector, and the nucleotide sequence was confirmed. Employing a baculovirus-insect cell system, the mTSHR-ecd (amino acids 22-415) was expressed as a fusion prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 1997-04, Vol.138 (4), p.1658-1666
Hauptverfasser: Vlase, H, Matsuoka, N, Graves, P N, Magnusson, R P, Davies, T F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mouse TSH receptor ectodomain (mTSHR-ecd) was amplified from murine thyroid complementary DNA and ligated into the pAcGP67B insect cell vector, and the nucleotide sequence was confirmed. Employing a baculovirus-insect cell system, the mTSHR-ecd (amino acids 22-415) was expressed as a fusion protein with the gp67 insect cell signal sequence at the NH2-terminus and a C-terminal six-histidine tag. Protein expression was assessed by Western blot using a murine monoclonal antibody (recognizing amino acids 22-35) and a rabbit antipeptide antibody (recognizing amino acids 397-415). These antibodies detected two principal species of mTSHR-ecd, one glycosylated (66 kDa) and one nonglycosylated (52 kDa), in cell lysates of infected insect cells. More than 10% of these species were present in a water-soluble (cytosolic) fraction. This fraction was then used to purify, under native conditions, 100-microg amounts of mTSHR-ecd using nickel-nitrilo-triacetic (Ni-NTA) resin chromatography. The purified cytosolic mTSHR-ecd migrated as a homogeneous 66-kDa band visible on Coomassie blue-stained gels and was confirmed by Western blotting. We also purified the mTSHR-ecd from total cell lysates under denaturing conditions, followed by "in vitro" refolding on the Ni-NTA column. Under these conditions, milligram amounts of soluble mTSHR-ecd were obtained. This material consisted primarily of the 66-kDa glycosylated form, but in addition contained four or five lower molecular mass, partially glycosylated intermediates and the 52-kDa nonglycosylated form. Deglycosylation with either endoglycosidase F or H, reduced all mTSHR-ecd glycosylated species to a 52-kDa nonglycosylated form. Both the cytosolic and refolded mTSHR-ecd preparations inhibited the binding of [125I]TSH to the full-length human TSHR expressed in Chinese hamster ovary cells in a dose-dependent manner, with similar affinities. The affinity of such interactions was 3 orders of magnitude less than observed with native porcine TSHR and was further reduced by unfolding the mTSHR-ecd preparations. The cytosolic and refolded mTSHR-ecd were also recognized by hTSHR autoantibodies in the serum of patients with hyperthyroid Graves' disease. Such autoantibody binding to mTSHR-ecd was also markedly reduced by unfolding the antigen. These results demonstrated the successful production of large quantities of well characterized, biologically active, mTSHR-ecd antigen. In addition, the data showed that although the ectodomain
ISSN:0013-7227
DOI:10.1210/en.138.4.1658