Skin cancer recognition by computer vision

Automatic detection of several features characteristic of basal cell epitheliomas is described. The features selected for this feasibility study are semitranslucency, telangiectasia, ulcer, crust, and tumor border. Image processing methods used in this study include frequency analysis of the Fourier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 1989, Vol.13 (1), p.31-36
Hauptverfasser: Moss, Randy H., Stoecker, William V., Lin, Shi-Jen, Muruganandhan, Sundararajun, Chu, Kuang-Fu, Poneleit, Kathy M., Mitchell, Carl D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 31
container_title Computerized medical imaging and graphics
container_volume 13
creator Moss, Randy H.
Stoecker, William V.
Lin, Shi-Jen
Muruganandhan, Sundararajun
Chu, Kuang-Fu
Poneleit, Kathy M.
Mitchell, Carl D.
description Automatic detection of several features characteristic of basal cell epitheliomas is described. The features selected for this feasibility study are semitranslucency, telangiectasia, ulcer, crust, and tumor border. Image processing methods used in this study include frequency analysis of the Fourier transform of the image, the Sun-Wee texture analysis algorithm, and several other image analysis techniques suitable for skin photographs. This image analysis software is designed for use with AI/DERM, an expert system that models diagnosis of skin tumors by dermatologists.
doi_str_mv 10.1016/0895-6111(89)90076-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78904053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0895611189900761</els_id><sourcerecordid>78904053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d8759a5603205673d2d05cc6da0a940605f8579d5318e9ed16188998a4581df93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotVb_gcJeFBVWZ3Y3XxdBil9Q8KCeQ5pkJdru1mRb6L83tYvePA3MPPMy8xByjHCFgOwahKQ5Q8RzIS8kAGc57pAhCi5z4Bx3yfAX2ScHMX4AQAEcB2RQyKIqRDkkly-fvsmMbowLWXCmfW9859smm64z084Xyy71Vz6m1iHZq_UsuqO-jsjb_d3r-DGfPD88jW8nuSkF73IrOJWaMigLoIyXtrBAjWFWg5YVMKC1oFxaWqJw0llkKISUQldUoK1lOSJn29xFaL-WLnZq7qNxs5luXLuMigsJFdAygdUWNKGNMbhaLYKf67BWCGqjSG3-V5v_lZDqR5HCtHbS5y-nc2d_l3onaX7az3U0elaHJMfHv2zJSsCqSNzNlnNJxsq7oKLxLom0PonslG39_4d8A41Xf64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78904053</pqid></control><display><type>article</type><title>Skin cancer recognition by computer vision</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Moss, Randy H. ; Stoecker, William V. ; Lin, Shi-Jen ; Muruganandhan, Sundararajun ; Chu, Kuang-Fu ; Poneleit, Kathy M. ; Mitchell, Carl D.</creator><creatorcontrib>Moss, Randy H. ; Stoecker, William V. ; Lin, Shi-Jen ; Muruganandhan, Sundararajun ; Chu, Kuang-Fu ; Poneleit, Kathy M. ; Mitchell, Carl D.</creatorcontrib><description>Automatic detection of several features characteristic of basal cell epitheliomas is described. The features selected for this feasibility study are semitranslucency, telangiectasia, ulcer, crust, and tumor border. Image processing methods used in this study include frequency analysis of the Fourier transform of the image, the Sun-Wee texture analysis algorithm, and several other image analysis techniques suitable for skin photographs. This image analysis software is designed for use with AI/DERM, an expert system that models diagnosis of skin tumors by dermatologists.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/0895-6111(89)90076-1</identifier><identifier>PMID: 2924283</identifier><language>eng</language><publisher>New York, NY: Elsevier Ltd</publisher><subject>Artificial intelligence ; Basal cell carcinoma (epithelioma) ; Biological and medical sciences ; Carcinoma, Basal Cell - diagnosis ; Computer vision ; Dermatology ; Diagnosis, Differential ; Expert Systems ; Feasibility Studies ; Fourier Analysis ; Fourier Transform processing ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Minicomputers ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Pattern Recognition, Automated ; Photography ; Skin cancer ; Skin Neoplasms - diagnosis ; Skin Ulcer - diagnosis ; Telangiectasis - diagnosis ; Texture analysis</subject><ispartof>Computerized medical imaging and graphics, 1989, Vol.13 (1), p.31-36</ispartof><rights>1989</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d8759a5603205673d2d05cc6da0a940605f8579d5318e9ed16188998a4581df93</citedby><cites>FETCH-LOGICAL-c387t-d8759a5603205673d2d05cc6da0a940605f8579d5318e9ed16188998a4581df93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0895-6111(89)90076-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19630142$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2924283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moss, Randy H.</creatorcontrib><creatorcontrib>Stoecker, William V.</creatorcontrib><creatorcontrib>Lin, Shi-Jen</creatorcontrib><creatorcontrib>Muruganandhan, Sundararajun</creatorcontrib><creatorcontrib>Chu, Kuang-Fu</creatorcontrib><creatorcontrib>Poneleit, Kathy M.</creatorcontrib><creatorcontrib>Mitchell, Carl D.</creatorcontrib><title>Skin cancer recognition by computer vision</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>Automatic detection of several features characteristic of basal cell epitheliomas is described. The features selected for this feasibility study are semitranslucency, telangiectasia, ulcer, crust, and tumor border. Image processing methods used in this study include frequency analysis of the Fourier transform of the image, the Sun-Wee texture analysis algorithm, and several other image analysis techniques suitable for skin photographs. This image analysis software is designed for use with AI/DERM, an expert system that models diagnosis of skin tumors by dermatologists.</description><subject>Artificial intelligence</subject><subject>Basal cell carcinoma (epithelioma)</subject><subject>Biological and medical sciences</subject><subject>Carcinoma, Basal Cell - diagnosis</subject><subject>Computer vision</subject><subject>Dermatology</subject><subject>Diagnosis, Differential</subject><subject>Expert Systems</subject><subject>Feasibility Studies</subject><subject>Fourier Analysis</subject><subject>Fourier Transform processing</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Minicomputers</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Pattern Recognition, Automated</subject><subject>Photography</subject><subject>Skin cancer</subject><subject>Skin Neoplasms - diagnosis</subject><subject>Skin Ulcer - diagnosis</subject><subject>Telangiectasis - diagnosis</subject><subject>Texture analysis</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotVb_gcJeFBVWZ3Y3XxdBil9Q8KCeQ5pkJdru1mRb6L83tYvePA3MPPMy8xByjHCFgOwahKQ5Q8RzIS8kAGc57pAhCi5z4Bx3yfAX2ScHMX4AQAEcB2RQyKIqRDkkly-fvsmMbowLWXCmfW9859smm64z084Xyy71Vz6m1iHZq_UsuqO-jsjb_d3r-DGfPD88jW8nuSkF73IrOJWaMigLoIyXtrBAjWFWg5YVMKC1oFxaWqJw0llkKISUQldUoK1lOSJn29xFaL-WLnZq7qNxs5luXLuMigsJFdAygdUWNKGNMbhaLYKf67BWCGqjSG3-V5v_lZDqR5HCtHbS5y-nc2d_l3onaX7az3U0elaHJMfHv2zJSsCqSNzNlnNJxsq7oKLxLom0PonslG39_4d8A41Xf64</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Moss, Randy H.</creator><creator>Stoecker, William V.</creator><creator>Lin, Shi-Jen</creator><creator>Muruganandhan, Sundararajun</creator><creator>Chu, Kuang-Fu</creator><creator>Poneleit, Kathy M.</creator><creator>Mitchell, Carl D.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>1989</creationdate><title>Skin cancer recognition by computer vision</title><author>Moss, Randy H. ; Stoecker, William V. ; Lin, Shi-Jen ; Muruganandhan, Sundararajun ; Chu, Kuang-Fu ; Poneleit, Kathy M. ; Mitchell, Carl D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d8759a5603205673d2d05cc6da0a940605f8579d5318e9ed16188998a4581df93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Artificial intelligence</topic><topic>Basal cell carcinoma (epithelioma)</topic><topic>Biological and medical sciences</topic><topic>Carcinoma, Basal Cell - diagnosis</topic><topic>Computer vision</topic><topic>Dermatology</topic><topic>Diagnosis, Differential</topic><topic>Expert Systems</topic><topic>Feasibility Studies</topic><topic>Fourier Analysis</topic><topic>Fourier Transform processing</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Minicomputers</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Pattern Recognition, Automated</topic><topic>Photography</topic><topic>Skin cancer</topic><topic>Skin Neoplasms - diagnosis</topic><topic>Skin Ulcer - diagnosis</topic><topic>Telangiectasis - diagnosis</topic><topic>Texture analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moss, Randy H.</creatorcontrib><creatorcontrib>Stoecker, William V.</creatorcontrib><creatorcontrib>Lin, Shi-Jen</creatorcontrib><creatorcontrib>Muruganandhan, Sundararajun</creatorcontrib><creatorcontrib>Chu, Kuang-Fu</creatorcontrib><creatorcontrib>Poneleit, Kathy M.</creatorcontrib><creatorcontrib>Mitchell, Carl D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moss, Randy H.</au><au>Stoecker, William V.</au><au>Lin, Shi-Jen</au><au>Muruganandhan, Sundararajun</au><au>Chu, Kuang-Fu</au><au>Poneleit, Kathy M.</au><au>Mitchell, Carl D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin cancer recognition by computer vision</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>1989</date><risdate>1989</risdate><volume>13</volume><issue>1</issue><spage>31</spage><epage>36</epage><pages>31-36</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>Automatic detection of several features characteristic of basal cell epitheliomas is described. The features selected for this feasibility study are semitranslucency, telangiectasia, ulcer, crust, and tumor border. Image processing methods used in this study include frequency analysis of the Fourier transform of the image, the Sun-Wee texture analysis algorithm, and several other image analysis techniques suitable for skin photographs. This image analysis software is designed for use with AI/DERM, an expert system that models diagnosis of skin tumors by dermatologists.</abstract><cop>New York, NY</cop><pub>Elsevier Ltd</pub><pmid>2924283</pmid><doi>10.1016/0895-6111(89)90076-1</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-6111
ispartof Computerized medical imaging and graphics, 1989, Vol.13 (1), p.31-36
issn 0895-6111
1879-0771
language eng
recordid cdi_proquest_miscellaneous_78904053
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Artificial intelligence
Basal cell carcinoma (epithelioma)
Biological and medical sciences
Carcinoma, Basal Cell - diagnosis
Computer vision
Dermatology
Diagnosis, Differential
Expert Systems
Feasibility Studies
Fourier Analysis
Fourier Transform processing
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Minicomputers
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Pattern Recognition, Automated
Photography
Skin cancer
Skin Neoplasms - diagnosis
Skin Ulcer - diagnosis
Telangiectasis - diagnosis
Texture analysis
title Skin cancer recognition by computer vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin%20cancer%20recognition%20by%20computer%20vision&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Moss,%20Randy%20H.&rft.date=1989&rft.volume=13&rft.issue=1&rft.spage=31&rft.epage=36&rft.pages=31-36&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/0895-6111(89)90076-1&rft_dat=%3Cproquest_cross%3E78904053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78904053&rft_id=info:pmid/2924283&rft_els_id=0895611189900761&rfr_iscdi=true