The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase
The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation pr...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1989-04, Vol.264 (10), p.5442-5451 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5451 |
---|---|
container_issue | 10 |
container_start_page | 5442 |
container_title | The Journal of biological chemistry |
container_volume | 264 |
creator | Kok, M Oldenhuis, R van der Linden, M P G Meulenberg, C H C Kingma, J Witholt, B |
description | The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation products in alkane oxidation. The alkA region contains three coding sequences, encoding two related rubredoxins (alkF and alkG) of 14- and 18-kDa molecular mass and a 52-kDa aldehyde dehydrogenase (alkH). Deletion analysis indicated that neither the 14-kDa alkF gene product (rubredoxin 1) nor the amino-terminal part of the 18-kDa alkG gene product (rubredoxin 2) is required for alkane hydroxylase activity in vivo.
The product of the alkH cistron restores growth of a P. oleovorans aldehyde dehydrogenase mutant on aliphatic alcohols and aldehydes. Its amino acid sequence shows considerable homology to previously characterized aldehyde dehydrogenases from mammalian and fungal origin.
The nucleotide composition of the alk genes (47% G+C) differs considerably from the G+C content of the P. oleovorans genome suggesting that the alk regulon may originate from an unrelated organism. |
doi_str_mv | 10.1016/S0021-9258(18)83565-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78901325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818835657</els_id><sourcerecordid>15167738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-4b4afda5a477bcbf058e2f0216409a3a36b79f3f160d0a6f90cf6734c35ef8363</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModa3-hEJAEb2YmkwmycyV1EXbQkHBCt6FTHLSic5MtslM6_57M7vL3jYQzsV53vP1InRGyTklVHz6SUhJi6bk9Qdaf6wZF7yQz9CKkpoVjNPfz9HqiLxEr1L6Q_KrGnqCTkpRSUmbFUq3HeAfCWYbhjDqhEMP4SFEPSas-79fLtY4bCCGEcNogoWEp8eA0xRnM81R9_0WR-j1BBbHuY1gwz-_SEebf65godtawLsQwx3kFvAavXC6T_DmEE_Rr29fb9dXxc33y-v1xU1hKkpkUbWVdlZznUdtTesIr6F0eSNRkUYzzUQrG8ccFcQSLVxDjBOSVYZxcDUT7BS939fdxHA_Q5rU4JOBvtcjhDkpWTeEspI_CVJOhZSsziDfgyaGlCI4tYl-0HGrKFGLK2rnilpOrmitdq4omXVnhwZzO4A9qg425Py7Q14no3uXz298OmKS0bwkydjbPdb5u-7RR1CtD6aDYSm0jMCrqszU5z0F-bYPHqJKxmf3wGaFmZQN_olx_wPpGLZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15167738</pqid></control><display><type>article</type><title>The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kok, M ; Oldenhuis, R ; van der Linden, M P G ; Meulenberg, C H C ; Kingma, J ; Witholt, B</creator><creatorcontrib>Kok, M ; Oldenhuis, R ; van der Linden, M P G ; Meulenberg, C H C ; Kingma, J ; Witholt, B</creatorcontrib><description>The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation products in alkane oxidation. The alkA region contains three coding sequences, encoding two related rubredoxins (alkF and alkG) of 14- and 18-kDa molecular mass and a 52-kDa aldehyde dehydrogenase (alkH). Deletion analysis indicated that neither the 14-kDa alkF gene product (rubredoxin 1) nor the amino-terminal part of the 18-kDa alkG gene product (rubredoxin 2) is required for alkane hydroxylase activity in vivo.
The product of the alkH cistron restores growth of a P. oleovorans aldehyde dehydrogenase mutant on aliphatic alcohols and aldehydes. Its amino acid sequence shows considerable homology to previously characterized aldehyde dehydrogenases from mammalian and fungal origin.
The nucleotide composition of the alk genes (47% G+C) differs considerably from the G+C content of the P. oleovorans genome suggesting that the alk regulon may originate from an unrelated organism.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)83565-7</identifier><identifier>PMID: 2647719</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>aldehyde dehydrogenase ; Aldehyde Dehydrogenase - genetics ; Amino Acid Sequence ; Base Sequence ; Biological and medical sciences ; Cytochrome P-450 CYP4A ; Cytochrome P-450 Enzyme System - genetics ; Escherichia coli - genetics ; Ferredoxins - genetics ; Fundamental and applied biological sciences. Psychology ; Genes ; Genes, Bacterial ; Genotype ; Mixed Function Oxygenases - genetics ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; nucleotide sequence ; Operon ; operons ; Phenotype ; Plasmids ; Pseudomonas - enzymology ; Pseudomonas - genetics ; Pseudomonas oleovorans ; Restriction Mapping ; rubredoxin ; Rubredoxins - genetics ; Sequence Homology, Nucleic Acid ; Translation. Translation factors. Protein processing</subject><ispartof>The Journal of biological chemistry, 1989-04, Vol.264 (10), p.5442-5451</ispartof><rights>1989 © 1989 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-4b4afda5a477bcbf058e2f0216409a3a36b79f3f160d0a6f90cf6734c35ef8363</citedby><cites>FETCH-LOGICAL-c4107-4b4afda5a477bcbf058e2f0216409a3a36b79f3f160d0a6f90cf6734c35ef8363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7311600$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2647719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kok, M</creatorcontrib><creatorcontrib>Oldenhuis, R</creatorcontrib><creatorcontrib>van der Linden, M P G</creatorcontrib><creatorcontrib>Meulenberg, C H C</creatorcontrib><creatorcontrib>Kingma, J</creatorcontrib><creatorcontrib>Witholt, B</creatorcontrib><title>The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation products in alkane oxidation. The alkA region contains three coding sequences, encoding two related rubredoxins (alkF and alkG) of 14- and 18-kDa molecular mass and a 52-kDa aldehyde dehydrogenase (alkH). Deletion analysis indicated that neither the 14-kDa alkF gene product (rubredoxin 1) nor the amino-terminal part of the 18-kDa alkG gene product (rubredoxin 2) is required for alkane hydroxylase activity in vivo.
The product of the alkH cistron restores growth of a P. oleovorans aldehyde dehydrogenase mutant on aliphatic alcohols and aldehydes. Its amino acid sequence shows considerable homology to previously characterized aldehyde dehydrogenases from mammalian and fungal origin.
The nucleotide composition of the alk genes (47% G+C) differs considerably from the G+C content of the P. oleovorans genome suggesting that the alk regulon may originate from an unrelated organism.</description><subject>aldehyde dehydrogenase</subject><subject>Aldehyde Dehydrogenase - genetics</subject><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cytochrome P-450 CYP4A</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Ferredoxins - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Genotype</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequence</subject><subject>Operon</subject><subject>operons</subject><subject>Phenotype</subject><subject>Plasmids</subject><subject>Pseudomonas - enzymology</subject><subject>Pseudomonas - genetics</subject><subject>Pseudomonas oleovorans</subject><subject>Restriction Mapping</subject><subject>rubredoxin</subject><subject>Rubredoxins - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Translation. Translation factors. Protein processing</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoModa3-hEJAEb2YmkwmycyV1EXbQkHBCt6FTHLSic5MtslM6_57M7vL3jYQzsV53vP1InRGyTklVHz6SUhJi6bk9Qdaf6wZF7yQz9CKkpoVjNPfz9HqiLxEr1L6Q_KrGnqCTkpRSUmbFUq3HeAfCWYbhjDqhEMP4SFEPSas-79fLtY4bCCGEcNogoWEp8eA0xRnM81R9_0WR-j1BBbHuY1gwz-_SEebf65godtawLsQwx3kFvAavXC6T_DmEE_Rr29fb9dXxc33y-v1xU1hKkpkUbWVdlZznUdtTesIr6F0eSNRkUYzzUQrG8ccFcQSLVxDjBOSVYZxcDUT7BS939fdxHA_Q5rU4JOBvtcjhDkpWTeEspI_CVJOhZSsziDfgyaGlCI4tYl-0HGrKFGLK2rnilpOrmitdq4omXVnhwZzO4A9qg425Py7Q14no3uXz298OmKS0bwkydjbPdb5u-7RR1CtD6aDYSm0jMCrqszU5z0F-bYPHqJKxmf3wGaFmZQN_olx_wPpGLZg</recordid><startdate>19890405</startdate><enddate>19890405</enddate><creator>Kok, M</creator><creator>Oldenhuis, R</creator><creator>van der Linden, M P G</creator><creator>Meulenberg, C H C</creator><creator>Kingma, J</creator><creator>Witholt, B</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19890405</creationdate><title>The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase</title><author>Kok, M ; Oldenhuis, R ; van der Linden, M P G ; Meulenberg, C H C ; Kingma, J ; Witholt, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-4b4afda5a477bcbf058e2f0216409a3a36b79f3f160d0a6f90cf6734c35ef8363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>aldehyde dehydrogenase</topic><topic>Aldehyde Dehydrogenase - genetics</topic><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cytochrome P-450 CYP4A</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Ferredoxins - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Genotype</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequence</topic><topic>Operon</topic><topic>operons</topic><topic>Phenotype</topic><topic>Plasmids</topic><topic>Pseudomonas - enzymology</topic><topic>Pseudomonas - genetics</topic><topic>Pseudomonas oleovorans</topic><topic>Restriction Mapping</topic><topic>rubredoxin</topic><topic>Rubredoxins - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Translation. Translation factors. Protein processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kok, M</creatorcontrib><creatorcontrib>Oldenhuis, R</creatorcontrib><creatorcontrib>van der Linden, M P G</creatorcontrib><creatorcontrib>Meulenberg, C H C</creatorcontrib><creatorcontrib>Kingma, J</creatorcontrib><creatorcontrib>Witholt, B</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kok, M</au><au>Oldenhuis, R</au><au>van der Linden, M P G</au><au>Meulenberg, C H C</au><au>Kingma, J</au><au>Witholt, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1989-04-05</date><risdate>1989</risdate><volume>264</volume><issue>10</issue><spage>5442</spage><epage>5451</epage><pages>5442-5451</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation products in alkane oxidation. The alkA region contains three coding sequences, encoding two related rubredoxins (alkF and alkG) of 14- and 18-kDa molecular mass and a 52-kDa aldehyde dehydrogenase (alkH). Deletion analysis indicated that neither the 14-kDa alkF gene product (rubredoxin 1) nor the amino-terminal part of the 18-kDa alkG gene product (rubredoxin 2) is required for alkane hydroxylase activity in vivo.
The product of the alkH cistron restores growth of a P. oleovorans aldehyde dehydrogenase mutant on aliphatic alcohols and aldehydes. Its amino acid sequence shows considerable homology to previously characterized aldehyde dehydrogenases from mammalian and fungal origin.
The nucleotide composition of the alk genes (47% G+C) differs considerably from the G+C content of the P. oleovorans genome suggesting that the alk regulon may originate from an unrelated organism.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>2647719</pmid><doi>10.1016/S0021-9258(18)83565-7</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1989-04, Vol.264 (10), p.5442-5451 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_78901325 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | aldehyde dehydrogenase Aldehyde Dehydrogenase - genetics Amino Acid Sequence Base Sequence Biological and medical sciences Cytochrome P-450 CYP4A Cytochrome P-450 Enzyme System - genetics Escherichia coli - genetics Ferredoxins - genetics Fundamental and applied biological sciences. Psychology Genes Genes, Bacterial Genotype Mixed Function Oxygenases - genetics Molecular and cellular biology Molecular genetics Molecular Sequence Data nucleotide sequence Operon operons Phenotype Plasmids Pseudomonas - enzymology Pseudomonas - genetics Pseudomonas oleovorans Restriction Mapping rubredoxin Rubredoxins - genetics Sequence Homology, Nucleic Acid Translation. Translation factors. Protein processing |
title | The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Pseudomonas%20oleovorans%20alkBAC%20operon%20encodes%20two%20structurally%20related%20rubredoxins%20and%20an%20aldehyde%20dehydrogenase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kok,%20M&rft.date=1989-04-05&rft.volume=264&rft.issue=10&rft.spage=5442&rft.epage=5451&rft.pages=5442-5451&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)83565-7&rft_dat=%3Cproquest_cross%3E15167738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15167738&rft_id=info:pmid/2647719&rft_els_id=S0021925818835657&rfr_iscdi=true |