The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase

The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1989-04, Vol.264 (10), p.5442-5451
Hauptverfasser: Kok, M, Oldenhuis, R, van der Linden, M P G, Meulenberg, C H C, Kingma, J, Witholt, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5451
container_issue 10
container_start_page 5442
container_title The Journal of biological chemistry
container_volume 264
creator Kok, M
Oldenhuis, R
van der Linden, M P G
Meulenberg, C H C
Kingma, J
Witholt, B
description The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation products in alkane oxidation. The alkA region contains three coding sequences, encoding two related rubredoxins (alkF and alkG) of 14- and 18-kDa molecular mass and a 52-kDa aldehyde dehydrogenase (alkH). Deletion analysis indicated that neither the 14-kDa alkF gene product (rubredoxin 1) nor the amino-terminal part of the 18-kDa alkG gene product (rubredoxin 2) is required for alkane hydroxylase activity in vivo. The product of the alkH cistron restores growth of a P. oleovorans aldehyde dehydrogenase mutant on aliphatic alcohols and aldehydes. Its amino acid sequence shows considerable homology to previously characterized aldehyde dehydrogenases from mammalian and fungal origin. The nucleotide composition of the alk genes (47% G+C) differs considerably from the G+C content of the P. oleovorans genome suggesting that the alk regulon may originate from an unrelated organism.
doi_str_mv 10.1016/S0021-9258(18)83565-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78901325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818835657</els_id><sourcerecordid>15167738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-4b4afda5a477bcbf058e2f0216409a3a36b79f3f160d0a6f90cf6734c35ef8363</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModa3-hEJAEb2YmkwmycyV1EXbQkHBCt6FTHLSic5MtslM6_57M7vL3jYQzsV53vP1InRGyTklVHz6SUhJi6bk9Qdaf6wZF7yQz9CKkpoVjNPfz9HqiLxEr1L6Q_KrGnqCTkpRSUmbFUq3HeAfCWYbhjDqhEMP4SFEPSas-79fLtY4bCCGEcNogoWEp8eA0xRnM81R9_0WR-j1BBbHuY1gwz-_SEebf65godtawLsQwx3kFvAavXC6T_DmEE_Rr29fb9dXxc33y-v1xU1hKkpkUbWVdlZznUdtTesIr6F0eSNRkUYzzUQrG8ccFcQSLVxDjBOSVYZxcDUT7BS939fdxHA_Q5rU4JOBvtcjhDkpWTeEspI_CVJOhZSsziDfgyaGlCI4tYl-0HGrKFGLK2rnilpOrmitdq4omXVnhwZzO4A9qg425Py7Q14no3uXz298OmKS0bwkydjbPdb5u-7RR1CtD6aDYSm0jMCrqszU5z0F-bYPHqJKxmf3wGaFmZQN_olx_wPpGLZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15167738</pqid></control><display><type>article</type><title>The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kok, M ; Oldenhuis, R ; van der Linden, M P G ; Meulenberg, C H C ; Kingma, J ; Witholt, B</creator><creatorcontrib>Kok, M ; Oldenhuis, R ; van der Linden, M P G ; Meulenberg, C H C ; Kingma, J ; Witholt, B</creatorcontrib><description>The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation products in alkane oxidation. The alkA region contains three coding sequences, encoding two related rubredoxins (alkF and alkG) of 14- and 18-kDa molecular mass and a 52-kDa aldehyde dehydrogenase (alkH). Deletion analysis indicated that neither the 14-kDa alkF gene product (rubredoxin 1) nor the amino-terminal part of the 18-kDa alkG gene product (rubredoxin 2) is required for alkane hydroxylase activity in vivo. The product of the alkH cistron restores growth of a P. oleovorans aldehyde dehydrogenase mutant on aliphatic alcohols and aldehydes. Its amino acid sequence shows considerable homology to previously characterized aldehyde dehydrogenases from mammalian and fungal origin. The nucleotide composition of the alk genes (47% G+C) differs considerably from the G+C content of the P. oleovorans genome suggesting that the alk regulon may originate from an unrelated organism.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)83565-7</identifier><identifier>PMID: 2647719</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>aldehyde dehydrogenase ; Aldehyde Dehydrogenase - genetics ; Amino Acid Sequence ; Base Sequence ; Biological and medical sciences ; Cytochrome P-450 CYP4A ; Cytochrome P-450 Enzyme System - genetics ; Escherichia coli - genetics ; Ferredoxins - genetics ; Fundamental and applied biological sciences. Psychology ; Genes ; Genes, Bacterial ; Genotype ; Mixed Function Oxygenases - genetics ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; nucleotide sequence ; Operon ; operons ; Phenotype ; Plasmids ; Pseudomonas - enzymology ; Pseudomonas - genetics ; Pseudomonas oleovorans ; Restriction Mapping ; rubredoxin ; Rubredoxins - genetics ; Sequence Homology, Nucleic Acid ; Translation. Translation factors. Protein processing</subject><ispartof>The Journal of biological chemistry, 1989-04, Vol.264 (10), p.5442-5451</ispartof><rights>1989 © 1989 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-4b4afda5a477bcbf058e2f0216409a3a36b79f3f160d0a6f90cf6734c35ef8363</citedby><cites>FETCH-LOGICAL-c4107-4b4afda5a477bcbf058e2f0216409a3a36b79f3f160d0a6f90cf6734c35ef8363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7311600$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2647719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kok, M</creatorcontrib><creatorcontrib>Oldenhuis, R</creatorcontrib><creatorcontrib>van der Linden, M P G</creatorcontrib><creatorcontrib>Meulenberg, C H C</creatorcontrib><creatorcontrib>Kingma, J</creatorcontrib><creatorcontrib>Witholt, B</creatorcontrib><title>The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation products in alkane oxidation. The alkA region contains three coding sequences, encoding two related rubredoxins (alkF and alkG) of 14- and 18-kDa molecular mass and a 52-kDa aldehyde dehydrogenase (alkH). Deletion analysis indicated that neither the 14-kDa alkF gene product (rubredoxin 1) nor the amino-terminal part of the 18-kDa alkG gene product (rubredoxin 2) is required for alkane hydroxylase activity in vivo. The product of the alkH cistron restores growth of a P. oleovorans aldehyde dehydrogenase mutant on aliphatic alcohols and aldehydes. Its amino acid sequence shows considerable homology to previously characterized aldehyde dehydrogenases from mammalian and fungal origin. The nucleotide composition of the alk genes (47% G+C) differs considerably from the G+C content of the P. oleovorans genome suggesting that the alk regulon may originate from an unrelated organism.</description><subject>aldehyde dehydrogenase</subject><subject>Aldehyde Dehydrogenase - genetics</subject><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cytochrome P-450 CYP4A</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Ferredoxins - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Genotype</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequence</subject><subject>Operon</subject><subject>operons</subject><subject>Phenotype</subject><subject>Plasmids</subject><subject>Pseudomonas - enzymology</subject><subject>Pseudomonas - genetics</subject><subject>Pseudomonas oleovorans</subject><subject>Restriction Mapping</subject><subject>rubredoxin</subject><subject>Rubredoxins - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Translation. Translation factors. Protein processing</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoModa3-hEJAEb2YmkwmycyV1EXbQkHBCt6FTHLSic5MtslM6_57M7vL3jYQzsV53vP1InRGyTklVHz6SUhJi6bk9Qdaf6wZF7yQz9CKkpoVjNPfz9HqiLxEr1L6Q_KrGnqCTkpRSUmbFUq3HeAfCWYbhjDqhEMP4SFEPSas-79fLtY4bCCGEcNogoWEp8eA0xRnM81R9_0WR-j1BBbHuY1gwz-_SEebf65godtawLsQwx3kFvAavXC6T_DmEE_Rr29fb9dXxc33y-v1xU1hKkpkUbWVdlZznUdtTesIr6F0eSNRkUYzzUQrG8ccFcQSLVxDjBOSVYZxcDUT7BS939fdxHA_Q5rU4JOBvtcjhDkpWTeEspI_CVJOhZSsziDfgyaGlCI4tYl-0HGrKFGLK2rnilpOrmitdq4omXVnhwZzO4A9qg425Py7Q14no3uXz298OmKS0bwkydjbPdb5u-7RR1CtD6aDYSm0jMCrqszU5z0F-bYPHqJKxmf3wGaFmZQN_olx_wPpGLZg</recordid><startdate>19890405</startdate><enddate>19890405</enddate><creator>Kok, M</creator><creator>Oldenhuis, R</creator><creator>van der Linden, M P G</creator><creator>Meulenberg, C H C</creator><creator>Kingma, J</creator><creator>Witholt, B</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19890405</creationdate><title>The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase</title><author>Kok, M ; Oldenhuis, R ; van der Linden, M P G ; Meulenberg, C H C ; Kingma, J ; Witholt, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-4b4afda5a477bcbf058e2f0216409a3a36b79f3f160d0a6f90cf6734c35ef8363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>aldehyde dehydrogenase</topic><topic>Aldehyde Dehydrogenase - genetics</topic><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cytochrome P-450 CYP4A</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Ferredoxins - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Genotype</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequence</topic><topic>Operon</topic><topic>operons</topic><topic>Phenotype</topic><topic>Plasmids</topic><topic>Pseudomonas - enzymology</topic><topic>Pseudomonas - genetics</topic><topic>Pseudomonas oleovorans</topic><topic>Restriction Mapping</topic><topic>rubredoxin</topic><topic>Rubredoxins - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Translation. Translation factors. Protein processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kok, M</creatorcontrib><creatorcontrib>Oldenhuis, R</creatorcontrib><creatorcontrib>van der Linden, M P G</creatorcontrib><creatorcontrib>Meulenberg, C H C</creatorcontrib><creatorcontrib>Kingma, J</creatorcontrib><creatorcontrib>Witholt, B</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kok, M</au><au>Oldenhuis, R</au><au>van der Linden, M P G</au><au>Meulenberg, C H C</au><au>Kingma, J</au><au>Witholt, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1989-04-05</date><risdate>1989</risdate><volume>264</volume><issue>10</issue><spage>5442</spage><epage>5451</epage><pages>5442-5451</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation products in alkane oxidation. The alkA region contains three coding sequences, encoding two related rubredoxins (alkF and alkG) of 14- and 18-kDa molecular mass and a 52-kDa aldehyde dehydrogenase (alkH). Deletion analysis indicated that neither the 14-kDa alkF gene product (rubredoxin 1) nor the amino-terminal part of the 18-kDa alkG gene product (rubredoxin 2) is required for alkane hydroxylase activity in vivo. The product of the alkH cistron restores growth of a P. oleovorans aldehyde dehydrogenase mutant on aliphatic alcohols and aldehydes. Its amino acid sequence shows considerable homology to previously characterized aldehyde dehydrogenases from mammalian and fungal origin. The nucleotide composition of the alk genes (47% G+C) differs considerably from the G+C content of the P. oleovorans genome suggesting that the alk regulon may originate from an unrelated organism.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>2647719</pmid><doi>10.1016/S0021-9258(18)83565-7</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1989-04, Vol.264 (10), p.5442-5451
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_78901325
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects aldehyde dehydrogenase
Aldehyde Dehydrogenase - genetics
Amino Acid Sequence
Base Sequence
Biological and medical sciences
Cytochrome P-450 CYP4A
Cytochrome P-450 Enzyme System - genetics
Escherichia coli - genetics
Ferredoxins - genetics
Fundamental and applied biological sciences. Psychology
Genes
Genes, Bacterial
Genotype
Mixed Function Oxygenases - genetics
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
nucleotide sequence
Operon
operons
Phenotype
Plasmids
Pseudomonas - enzymology
Pseudomonas - genetics
Pseudomonas oleovorans
Restriction Mapping
rubredoxin
Rubredoxins - genetics
Sequence Homology, Nucleic Acid
Translation. Translation factors. Protein processing
title The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Pseudomonas%20oleovorans%20alkBAC%20operon%20encodes%20two%20structurally%20related%20rubredoxins%20and%20an%20aldehyde%20dehydrogenase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kok,%20M&rft.date=1989-04-05&rft.volume=264&rft.issue=10&rft.spage=5442&rft.epage=5451&rft.pages=5442-5451&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)83565-7&rft_dat=%3Cproquest_cross%3E15167738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15167738&rft_id=info:pmid/2647719&rft_els_id=S0021925818835657&rfr_iscdi=true