Model of the Origin of Rhythmic Population Oscillations in the Hippocampal Slice

One goal of mammalian neurobiology is to understand the generation of neuronal activity in large networks. Conceptual schemes have been based on either the properties of single cells or of individual synapses. For instance, the intrinsic oscillatory properties of individual thalamic neurons are thou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1989-03, Vol.243 (4896), p.1319-1325
Hauptverfasser: Traub, Roger D., Miles, Richard, Robert K. S. Wong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1325
container_issue 4896
container_start_page 1319
container_title Science (American Association for the Advancement of Science)
container_volume 243
creator Traub, Roger D.
Miles, Richard
Robert K. S. Wong
description One goal of mammalian neurobiology is to understand the generation of neuronal activity in large networks. Conceptual schemes have been based on either the properties of single cells or of individual synapses. For instance, the intrinsic oscillatory properties of individual thalamic neurons are thought to underlie thalamic spindle rhythms. This issue has been pursued with a computer model of the CA3 region of the hippocampus that is based on known cellular and synaptic properties. Over a wide range of parameters, this model generates a rhythmic activity at a frequency faster than the firing of individual cells. During each rhythmic event, a few cells fire while most other cells receive synchronous synaptic inputs. This activity resembles the hippocampal theta rhythm as well as synchronized synaptic events observed in vitro. The amplitude and frequency of this emergent rhythmic activity depend on intrinsic cellular properties and the connectivity and strength of both excitatory and inhibitory synapses.
doi_str_mv 10.1126/science.2646715
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_78897607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A7452911</galeid><jstor_id>1703678</jstor_id><sourcerecordid>A7452911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c796t-16e639cc7e51f4ce19062747fc4dcef4766b382d0c7a83a83919efda404551fc3</originalsourceid><addsrcrecordid>eNqN091v0zAQAPAIgUYZPPMCUoQQPIxu_ojt-HFU0E0qdGLAa-Q5l9aVEwc7kdh_j0uibaBKrRIpH_e7cxTfJclLjE4xJvwsaAONhlPCMy4we5RMMJJsKgmij5MJQpRPcyTY0-RZCBuEYkzSo-Ro5JPk6osrwaauSrs1pEtvVqbZPn1b33br2uj0yrW9VZ1xTbqMi9nhPqSRbTMuTNs6repW2fTaGg3PkyeVsgFejNfj5MfnT99nF9PFcn45O19MtZC8m2IOnEqtBTBcZRqwRJyITFQ6KzVUmeD8huakRFqonMZTYglVqTKUsZih6XHybqjbeverh9AVtQka4vc14PpQiDyXgiOxF1JGGIlV90KCsZAkx3shZoQjhrfwzX9w43rfxN8Si1GW4VxmEZ0MaKUsFKapXOeVXkEDXlnXQGXi63ORMSL_lvywQ8ejhLhbO_j7f3gUHfzuVqoPobi8_nqoXP48VH6cHyjz-eKhPNkltbMWVlDEzpktH-qzQWvvQvBQFa03tfK3BUbFdiyKcSyKsc9jxutxJ_qbGso7fx9_O8ZV0MpWXjXahDsWCSN420uvBrYJnfP3q4o4ZyKnfwBFpxmi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213541894</pqid></control><display><type>article</type><title>Model of the Origin of Rhythmic Population Oscillations in the Hippocampal Slice</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Traub, Roger D. ; Miles, Richard ; Robert K. S. Wong</creator><creatorcontrib>Traub, Roger D. ; Miles, Richard ; Robert K. S. Wong</creatorcontrib><description>One goal of mammalian neurobiology is to understand the generation of neuronal activity in large networks. Conceptual schemes have been based on either the properties of single cells or of individual synapses. For instance, the intrinsic oscillatory properties of individual thalamic neurons are thought to underlie thalamic spindle rhythms. This issue has been pursued with a computer model of the CA3 region of the hippocampus that is based on known cellular and synaptic properties. Over a wide range of parameters, this model generates a rhythmic activity at a frequency faster than the firing of individual cells. During each rhythmic event, a few cells fire while most other cells receive synchronous synaptic inputs. This activity resembles the hippocampal theta rhythm as well as synchronized synaptic events observed in vitro. The amplitude and frequency of this emergent rhythmic activity depend on intrinsic cellular properties and the connectivity and strength of both excitatory and inhibitory synapses.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.2646715</identifier><identifier>PMID: 2646715</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>Action potentials ; Action potentials (Electrophysiology) ; Analysis ; Animals ; Biological and medical sciences ; Biology ; Brain ; Central nervous system ; Computer Simulation ; Electroencephalography ; Electrophysiology ; Fundamental and applied biological sciences. Psychology ; Hippocampus ; Hippocampus (Brain) ; Hippocampus - physiology ; In Vitro Techniques ; Modeling ; Models, Neurological ; Musical intervals ; Nervous system ; Neural circuitry ; Neurons ; Neurons - physiology ; Pyramidal cells ; Pyramidal Tracts - physiology ; Synapses ; Theta rhythm ; Time constants ; Vertebrates: nervous system and sense organs</subject><ispartof>Science (American Association for the Advancement of Science), 1989-03, Vol.243 (4896), p.1319-1325</ispartof><rights>Copyright 1989 The American Association for the Advancement of Science</rights><rights>1989 INIST-CNRS</rights><rights>COPYRIGHT 1989 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1989 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Mar 10, 1989</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c796t-16e639cc7e51f4ce19062747fc4dcef4766b382d0c7a83a83919efda404551fc3</citedby><cites>FETCH-LOGICAL-c796t-16e639cc7e51f4ce19062747fc4dcef4766b382d0c7a83a83919efda404551fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1703678$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1703678$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7155217$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2646715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Traub, Roger D.</creatorcontrib><creatorcontrib>Miles, Richard</creatorcontrib><creatorcontrib>Robert K. S. Wong</creatorcontrib><title>Model of the Origin of Rhythmic Population Oscillations in the Hippocampal Slice</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>One goal of mammalian neurobiology is to understand the generation of neuronal activity in large networks. Conceptual schemes have been based on either the properties of single cells or of individual synapses. For instance, the intrinsic oscillatory properties of individual thalamic neurons are thought to underlie thalamic spindle rhythms. This issue has been pursued with a computer model of the CA3 region of the hippocampus that is based on known cellular and synaptic properties. Over a wide range of parameters, this model generates a rhythmic activity at a frequency faster than the firing of individual cells. During each rhythmic event, a few cells fire while most other cells receive synchronous synaptic inputs. This activity resembles the hippocampal theta rhythm as well as synchronized synaptic events observed in vitro. The amplitude and frequency of this emergent rhythmic activity depend on intrinsic cellular properties and the connectivity and strength of both excitatory and inhibitory synapses.</description><subject>Action potentials</subject><subject>Action potentials (Electrophysiology)</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biology</subject><subject>Brain</subject><subject>Central nervous system</subject><subject>Computer Simulation</subject><subject>Electroencephalography</subject><subject>Electrophysiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippocampus</subject><subject>Hippocampus (Brain)</subject><subject>Hippocampus - physiology</subject><subject>In Vitro Techniques</subject><subject>Modeling</subject><subject>Models, Neurological</subject><subject>Musical intervals</subject><subject>Nervous system</subject><subject>Neural circuitry</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Pyramidal cells</subject><subject>Pyramidal Tracts - physiology</subject><subject>Synapses</subject><subject>Theta rhythm</subject><subject>Time constants</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN091v0zAQAPAIgUYZPPMCUoQQPIxu_ojt-HFU0E0qdGLAa-Q5l9aVEwc7kdh_j0uibaBKrRIpH_e7cxTfJclLjE4xJvwsaAONhlPCMy4we5RMMJJsKgmij5MJQpRPcyTY0-RZCBuEYkzSo-Ro5JPk6osrwaauSrs1pEtvVqbZPn1b33br2uj0yrW9VZ1xTbqMi9nhPqSRbTMuTNs6repW2fTaGg3PkyeVsgFejNfj5MfnT99nF9PFcn45O19MtZC8m2IOnEqtBTBcZRqwRJyITFQ6KzVUmeD8huakRFqonMZTYglVqTKUsZih6XHybqjbeverh9AVtQka4vc14PpQiDyXgiOxF1JGGIlV90KCsZAkx3shZoQjhrfwzX9w43rfxN8Si1GW4VxmEZ0MaKUsFKapXOeVXkEDXlnXQGXi63ORMSL_lvywQ8ejhLhbO_j7f3gUHfzuVqoPobi8_nqoXP48VH6cHyjz-eKhPNkltbMWVlDEzpktH-qzQWvvQvBQFa03tfK3BUbFdiyKcSyKsc9jxutxJ_qbGso7fx9_O8ZV0MpWXjXahDsWCSN420uvBrYJnfP3q4o4ZyKnfwBFpxmi</recordid><startdate>19890310</startdate><enddate>19890310</enddate><creator>Traub, Roger D.</creator><creator>Miles, Richard</creator><creator>Robert K. S. Wong</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19890310</creationdate><title>Model of the Origin of Rhythmic Population Oscillations in the Hippocampal Slice</title><author>Traub, Roger D. ; Miles, Richard ; Robert K. S. Wong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c796t-16e639cc7e51f4ce19062747fc4dcef4766b382d0c7a83a83919efda404551fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Action potentials</topic><topic>Action potentials (Electrophysiology)</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biology</topic><topic>Brain</topic><topic>Central nervous system</topic><topic>Computer Simulation</topic><topic>Electroencephalography</topic><topic>Electrophysiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippocampus</topic><topic>Hippocampus (Brain)</topic><topic>Hippocampus - physiology</topic><topic>In Vitro Techniques</topic><topic>Modeling</topic><topic>Models, Neurological</topic><topic>Musical intervals</topic><topic>Nervous system</topic><topic>Neural circuitry</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Pyramidal cells</topic><topic>Pyramidal Tracts - physiology</topic><topic>Synapses</topic><topic>Theta rhythm</topic><topic>Time constants</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traub, Roger D.</creatorcontrib><creatorcontrib>Miles, Richard</creatorcontrib><creatorcontrib>Robert K. S. Wong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traub, Roger D.</au><au>Miles, Richard</au><au>Robert K. S. Wong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model of the Origin of Rhythmic Population Oscillations in the Hippocampal Slice</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1989-03-10</date><risdate>1989</risdate><volume>243</volume><issue>4896</issue><spage>1319</spage><epage>1325</epage><pages>1319-1325</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>One goal of mammalian neurobiology is to understand the generation of neuronal activity in large networks. Conceptual schemes have been based on either the properties of single cells or of individual synapses. For instance, the intrinsic oscillatory properties of individual thalamic neurons are thought to underlie thalamic spindle rhythms. This issue has been pursued with a computer model of the CA3 region of the hippocampus that is based on known cellular and synaptic properties. Over a wide range of parameters, this model generates a rhythmic activity at a frequency faster than the firing of individual cells. During each rhythmic event, a few cells fire while most other cells receive synchronous synaptic inputs. This activity resembles the hippocampal theta rhythm as well as synchronized synaptic events observed in vitro. The amplitude and frequency of this emergent rhythmic activity depend on intrinsic cellular properties and the connectivity and strength of both excitatory and inhibitory synapses.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>2646715</pmid><doi>10.1126/science.2646715</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1989-03, Vol.243 (4896), p.1319-1325
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_78897607
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Action potentials
Action potentials (Electrophysiology)
Analysis
Animals
Biological and medical sciences
Biology
Brain
Central nervous system
Computer Simulation
Electroencephalography
Electrophysiology
Fundamental and applied biological sciences. Psychology
Hippocampus
Hippocampus (Brain)
Hippocampus - physiology
In Vitro Techniques
Modeling
Models, Neurological
Musical intervals
Nervous system
Neural circuitry
Neurons
Neurons - physiology
Pyramidal cells
Pyramidal Tracts - physiology
Synapses
Theta rhythm
Time constants
Vertebrates: nervous system and sense organs
title Model of the Origin of Rhythmic Population Oscillations in the Hippocampal Slice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20of%20the%20Origin%20of%20Rhythmic%20Population%20Oscillations%20in%20the%20Hippocampal%20Slice&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Traub,%20Roger%20D.&rft.date=1989-03-10&rft.volume=243&rft.issue=4896&rft.spage=1319&rft.epage=1325&rft.pages=1319-1325&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.2646715&rft_dat=%3Cgale_proqu%3EA7452911%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213541894&rft_id=info:pmid/2646715&rft_galeid=A7452911&rft_jstor_id=1703678&rfr_iscdi=true