Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium

Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano et al.(1988) Biochemistry27, 5470–5476] and the peroxidase from the coprophilic fungus Coprinus macrorhizus[DePillis and Ortiz de Montellano (1989) Biochemistry28, 7947–7952]. These peroxidases mediate the one-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 1997-03, Vol.339 (1), p.200-209
Hauptverfasser: Tatarko, Matthew, Bumpus, John A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 1
container_start_page 200
container_title Archives of biochemistry and biophysics
container_volume 339
creator Tatarko, Matthew
Bumpus, John A
description Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano et al.(1988) Biochemistry27, 5470–5476] and the peroxidase from the coprophilic fungus Coprinus macrorhizus[DePillis and Ortiz de Montellano (1989) Biochemistry28, 7947–7952]. These peroxidases mediate the one-electron oxidation of azide ion-forming azidyl radical. Inactivation of these enzymes is caused by covalent modification of the heme prosthetic groups by azidyl radical. Lignin peroxidases from the wood-rotting fungus Phanerochaete chrysosporiumare also inactivated when they catalyze oxidation of azide ion [Tuisel et al.(1991) Arch. Biochem. Biophys.288, 456–462; DePillis et al.(1990) Arch. Biochem. Biophys.280, 217–223]. Following inactivation of horseradish peroxidase and the peroxidase from C. macrorhizussubstantial amounts of azidyl-heme adducts have been found. Only trace amounts of such adducts have been found following azide-mediated inactivation of lignin peroxidase. Nevertheless, we have shown that during oxidation of azide by lignin peroxidase H8 destruction of heme occurred and a substantial fraction of the enzyme is irreversibly inactivated. However, the rest of the enzyme forms a relatively stable ferrous–nitric oxide (NO) complex. Although this complex appears to be an inactivated form of the enzyme, we have shown that, when present as the ferrous–NO complex, the enzyme is actually protected from inactivation. The lignin peroxidase ferrous–NO complex reverts slowly ( t 1/2= 6.3 × 10 3s) to the ferric form. Reversion is accelerated if the complex is chromatographed on a PD-10 (Sephadex G-25) column or if veratryl alcohol is added. If azide and hydrogen peroxide (a required cosubstrate) are present (or added), the enzyme undergoes another cycle of catalysis and further inactivation. A detailed reaction mechanism is proposed that is consistent with our experimental observations, the chemistry of azide, and our current understanding of peroxidases.
doi_str_mv 10.1006/abbi.1996.9839
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_78897234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986196998392</els_id><sourcerecordid>78897234</sourcerecordid><originalsourceid>FETCH-LOGICAL-e277t-d8ae1bffef1460715f72acb22295071fd03514de282100da14db9d5ea717afbb3</originalsourceid><addsrcrecordid>eNpFUU1rGzEQFSUldZNeeyvolNu6I613tTqGUCcBQwNOzkJajeIp3pUr7Ya6v74yMfQ0H29mmPceY18FLAVA-906R0uhdbvUXa0_sIUA3VZQd6sLtgCAutJdKz6xzzn_AhBi1cpLdqmhaWUDC0brOU07THw7zZ4w8zjyUvPH0fYTvdmJSsMd-TZ6mgd--5c88hj4hl5HGvkTpviHvM3IQ4oDf9rZsbT6ncUJeb9LxxzzIaaye80-BrvP-OUcr9jL-sfz3UO1-Xn_eHe7qVAqNVW-syhcCBjKq6BEE5S0vZNS6qaUwUPdiJVH2cnC39uSO-0btEooG5yrr9jN-91Dir9nzJMZKPe435fP4pyN6jqtZL0qg9_Og7Mb0JtDosGmozlr8x8PNhr7miibl21RWkEDWomCd-84FjZvhMnknnDs0VPCfjI-khFgTi6Zk0vm5JI5uVT_A0Lmg-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78897234</pqid></control><display><type>article</type><title>Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Tatarko, Matthew ; Bumpus, John A</creator><creatorcontrib>Tatarko, Matthew ; Bumpus, John A</creatorcontrib><description>Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano et al.(1988) Biochemistry27, 5470–5476] and the peroxidase from the coprophilic fungus Coprinus macrorhizus[DePillis and Ortiz de Montellano (1989) Biochemistry28, 7947–7952]. These peroxidases mediate the one-electron oxidation of azide ion-forming azidyl radical. Inactivation of these enzymes is caused by covalent modification of the heme prosthetic groups by azidyl radical. Lignin peroxidases from the wood-rotting fungus Phanerochaete chrysosporiumare also inactivated when they catalyze oxidation of azide ion [Tuisel et al.(1991) Arch. Biochem. Biophys.288, 456–462; DePillis et al.(1990) Arch. Biochem. Biophys.280, 217–223]. Following inactivation of horseradish peroxidase and the peroxidase from C. macrorhizussubstantial amounts of azidyl-heme adducts have been found. Only trace amounts of such adducts have been found following azide-mediated inactivation of lignin peroxidase. Nevertheless, we have shown that during oxidation of azide by lignin peroxidase H8 destruction of heme occurred and a substantial fraction of the enzyme is irreversibly inactivated. However, the rest of the enzyme forms a relatively stable ferrous–nitric oxide (NO) complex. Although this complex appears to be an inactivated form of the enzyme, we have shown that, when present as the ferrous–NO complex, the enzyme is actually protected from inactivation. The lignin peroxidase ferrous–NO complex reverts slowly ( t 1/2= 6.3 × 10 3s) to the ferric form. Reversion is accelerated if the complex is chromatographed on a PD-10 (Sephadex G-25) column or if veratryl alcohol is added. If azide and hydrogen peroxide (a required cosubstrate) are present (or added), the enzyme undergoes another cycle of catalysis and further inactivation. A detailed reaction mechanism is proposed that is consistent with our experimental observations, the chemistry of azide, and our current understanding of peroxidases.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1006/abbi.1996.9839</identifier><identifier>PMID: 9056250</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>azide ; Azides - chemistry ; Azides - pharmacology ; Basidiomycota - enzymology ; Ferric Compounds - chemistry ; Ferrous Compounds - chemistry ; ferrous–NO complex ; Heme - chemistry ; hemeproteins ; Hydrogen Peroxide - chemistry ; lignin peroxidase ; LIGNINAS ; LIGNINE ; LIGNINOLYTIC MICROORGANISMS ; LIGNINS ; MICROORGANISME ; MICROORGANISMOS ; MICROORGANISMS ; nitric oxide ; Nitrous Oxide - chemistry ; Nitrous Oxide - metabolism ; Oxidation-Reduction ; Peroxidases - antagonists &amp; inhibitors ; Peroxidases - chemistry ; Phanerochaete chrysosporium ; Spectrum Analysis</subject><ispartof>Archives of biochemistry and biophysics, 1997-03, Vol.339 (1), p.200-209</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003986196998392$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9056250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tatarko, Matthew</creatorcontrib><creatorcontrib>Bumpus, John A</creatorcontrib><title>Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium</title><title>Archives of biochemistry and biophysics</title><addtitle>Arch Biochem Biophys</addtitle><description>Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano et al.(1988) Biochemistry27, 5470–5476] and the peroxidase from the coprophilic fungus Coprinus macrorhizus[DePillis and Ortiz de Montellano (1989) Biochemistry28, 7947–7952]. These peroxidases mediate the one-electron oxidation of azide ion-forming azidyl radical. Inactivation of these enzymes is caused by covalent modification of the heme prosthetic groups by azidyl radical. Lignin peroxidases from the wood-rotting fungus Phanerochaete chrysosporiumare also inactivated when they catalyze oxidation of azide ion [Tuisel et al.(1991) Arch. Biochem. Biophys.288, 456–462; DePillis et al.(1990) Arch. Biochem. Biophys.280, 217–223]. Following inactivation of horseradish peroxidase and the peroxidase from C. macrorhizussubstantial amounts of azidyl-heme adducts have been found. Only trace amounts of such adducts have been found following azide-mediated inactivation of lignin peroxidase. Nevertheless, we have shown that during oxidation of azide by lignin peroxidase H8 destruction of heme occurred and a substantial fraction of the enzyme is irreversibly inactivated. However, the rest of the enzyme forms a relatively stable ferrous–nitric oxide (NO) complex. Although this complex appears to be an inactivated form of the enzyme, we have shown that, when present as the ferrous–NO complex, the enzyme is actually protected from inactivation. The lignin peroxidase ferrous–NO complex reverts slowly ( t 1/2= 6.3 × 10 3s) to the ferric form. Reversion is accelerated if the complex is chromatographed on a PD-10 (Sephadex G-25) column or if veratryl alcohol is added. If azide and hydrogen peroxide (a required cosubstrate) are present (or added), the enzyme undergoes another cycle of catalysis and further inactivation. A detailed reaction mechanism is proposed that is consistent with our experimental observations, the chemistry of azide, and our current understanding of peroxidases.</description><subject>azide</subject><subject>Azides - chemistry</subject><subject>Azides - pharmacology</subject><subject>Basidiomycota - enzymology</subject><subject>Ferric Compounds - chemistry</subject><subject>Ferrous Compounds - chemistry</subject><subject>ferrous–NO complex</subject><subject>Heme - chemistry</subject><subject>hemeproteins</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>lignin peroxidase</subject><subject>LIGNINAS</subject><subject>LIGNINE</subject><subject>LIGNINOLYTIC MICROORGANISMS</subject><subject>LIGNINS</subject><subject>MICROORGANISME</subject><subject>MICROORGANISMOS</subject><subject>MICROORGANISMS</subject><subject>nitric oxide</subject><subject>Nitrous Oxide - chemistry</subject><subject>Nitrous Oxide - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Peroxidases - antagonists &amp; inhibitors</subject><subject>Peroxidases - chemistry</subject><subject>Phanerochaete chrysosporium</subject><subject>Spectrum Analysis</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFUU1rGzEQFSUldZNeeyvolNu6I613tTqGUCcBQwNOzkJajeIp3pUr7Ya6v74yMfQ0H29mmPceY18FLAVA-906R0uhdbvUXa0_sIUA3VZQd6sLtgCAutJdKz6xzzn_AhBi1cpLdqmhaWUDC0brOU07THw7zZ4w8zjyUvPH0fYTvdmJSsMd-TZ6mgd--5c88hj4hl5HGvkTpviHvM3IQ4oDf9rZsbT6ncUJeb9LxxzzIaaye80-BrvP-OUcr9jL-sfz3UO1-Xn_eHe7qVAqNVW-syhcCBjKq6BEE5S0vZNS6qaUwUPdiJVH2cnC39uSO-0btEooG5yrr9jN-91Dir9nzJMZKPe435fP4pyN6jqtZL0qg9_Og7Mb0JtDosGmozlr8x8PNhr7miibl21RWkEDWomCd-84FjZvhMnknnDs0VPCfjI-khFgTi6Zk0vm5JI5uVT_A0Lmg-c</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Tatarko, Matthew</creator><creator>Bumpus, John A</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>19970301</creationdate><title>Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium</title><author>Tatarko, Matthew ; Bumpus, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e277t-d8ae1bffef1460715f72acb22295071fd03514de282100da14db9d5ea717afbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>azide</topic><topic>Azides - chemistry</topic><topic>Azides - pharmacology</topic><topic>Basidiomycota - enzymology</topic><topic>Ferric Compounds - chemistry</topic><topic>Ferrous Compounds - chemistry</topic><topic>ferrous–NO complex</topic><topic>Heme - chemistry</topic><topic>hemeproteins</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>lignin peroxidase</topic><topic>LIGNINAS</topic><topic>LIGNINE</topic><topic>LIGNINOLYTIC MICROORGANISMS</topic><topic>LIGNINS</topic><topic>MICROORGANISME</topic><topic>MICROORGANISMOS</topic><topic>MICROORGANISMS</topic><topic>nitric oxide</topic><topic>Nitrous Oxide - chemistry</topic><topic>Nitrous Oxide - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Peroxidases - antagonists &amp; inhibitors</topic><topic>Peroxidases - chemistry</topic><topic>Phanerochaete chrysosporium</topic><topic>Spectrum Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tatarko, Matthew</creatorcontrib><creatorcontrib>Bumpus, John A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tatarko, Matthew</au><au>Bumpus, John A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium</atitle><jtitle>Archives of biochemistry and biophysics</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>339</volume><issue>1</issue><spage>200</spage><epage>209</epage><pages>200-209</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano et al.(1988) Biochemistry27, 5470–5476] and the peroxidase from the coprophilic fungus Coprinus macrorhizus[DePillis and Ortiz de Montellano (1989) Biochemistry28, 7947–7952]. These peroxidases mediate the one-electron oxidation of azide ion-forming azidyl radical. Inactivation of these enzymes is caused by covalent modification of the heme prosthetic groups by azidyl radical. Lignin peroxidases from the wood-rotting fungus Phanerochaete chrysosporiumare also inactivated when they catalyze oxidation of azide ion [Tuisel et al.(1991) Arch. Biochem. Biophys.288, 456–462; DePillis et al.(1990) Arch. Biochem. Biophys.280, 217–223]. Following inactivation of horseradish peroxidase and the peroxidase from C. macrorhizussubstantial amounts of azidyl-heme adducts have been found. Only trace amounts of such adducts have been found following azide-mediated inactivation of lignin peroxidase. Nevertheless, we have shown that during oxidation of azide by lignin peroxidase H8 destruction of heme occurred and a substantial fraction of the enzyme is irreversibly inactivated. However, the rest of the enzyme forms a relatively stable ferrous–nitric oxide (NO) complex. Although this complex appears to be an inactivated form of the enzyme, we have shown that, when present as the ferrous–NO complex, the enzyme is actually protected from inactivation. The lignin peroxidase ferrous–NO complex reverts slowly ( t 1/2= 6.3 × 10 3s) to the ferric form. Reversion is accelerated if the complex is chromatographed on a PD-10 (Sephadex G-25) column or if veratryl alcohol is added. If azide and hydrogen peroxide (a required cosubstrate) are present (or added), the enzyme undergoes another cycle of catalysis and further inactivation. A detailed reaction mechanism is proposed that is consistent with our experimental observations, the chemistry of azide, and our current understanding of peroxidases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9056250</pmid><doi>10.1006/abbi.1996.9839</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9861
ispartof Archives of biochemistry and biophysics, 1997-03, Vol.339 (1), p.200-209
issn 0003-9861
1096-0384
language eng
recordid cdi_proquest_miscellaneous_78897234
source MEDLINE; Elsevier ScienceDirect Journals
subjects azide
Azides - chemistry
Azides - pharmacology
Basidiomycota - enzymology
Ferric Compounds - chemistry
Ferrous Compounds - chemistry
ferrous–NO complex
Heme - chemistry
hemeproteins
Hydrogen Peroxide - chemistry
lignin peroxidase
LIGNINAS
LIGNINE
LIGNINOLYTIC MICROORGANISMS
LIGNINS
MICROORGANISME
MICROORGANISMOS
MICROORGANISMS
nitric oxide
Nitrous Oxide - chemistry
Nitrous Oxide - metabolism
Oxidation-Reduction
Peroxidases - antagonists & inhibitors
Peroxidases - chemistry
Phanerochaete chrysosporium
Spectrum Analysis
title Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20Studies%20on%20the%20Inactivation%20by%20Sodium%20Azide%20of%20Lignin%20Peroxidase%20from%20Phanerochaete%20chrysosporium&rft.jtitle=Archives%20of%20biochemistry%20and%20biophysics&rft.au=Tatarko,%20Matthew&rft.date=1997-03-01&rft.volume=339&rft.issue=1&rft.spage=200&rft.epage=209&rft.pages=200-209&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1006/abbi.1996.9839&rft_dat=%3Cproquest_pubme%3E78897234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78897234&rft_id=info:pmid/9056250&rft_els_id=S0003986196998392&rfr_iscdi=true