Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium
Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano et al.(1988) Biochemistry27, 5470–5476] and the peroxidase from the coprophilic fungus Coprinus macrorhizus[DePillis and Ortiz de Montellano (1989) Biochemistry28, 7947–7952]. These peroxidases mediate the one-...
Gespeichert in:
Veröffentlicht in: | Archives of biochemistry and biophysics 1997-03, Vol.339 (1), p.200-209 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | 1 |
container_start_page | 200 |
container_title | Archives of biochemistry and biophysics |
container_volume | 339 |
creator | Tatarko, Matthew Bumpus, John A |
description | Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano
et al.(1988)
Biochemistry27, 5470–5476] and the peroxidase from the coprophilic fungus
Coprinus macrorhizus[DePillis and Ortiz de Montellano (1989)
Biochemistry28, 7947–7952]. These peroxidases mediate the one-electron oxidation of azide ion-forming azidyl radical. Inactivation of these enzymes is caused by covalent modification of the heme prosthetic groups by azidyl radical. Lignin peroxidases from the wood-rotting fungus
Phanerochaete chrysosporiumare also inactivated when they catalyze oxidation of azide ion [Tuisel
et al.(1991)
Arch. Biochem. Biophys.288, 456–462; DePillis
et al.(1990)
Arch. Biochem. Biophys.280, 217–223]. Following inactivation of horseradish peroxidase and the peroxidase from
C. macrorhizussubstantial amounts of azidyl-heme adducts have been found. Only trace amounts of such adducts have been found following azide-mediated inactivation of lignin peroxidase. Nevertheless, we have shown that during oxidation of azide by lignin peroxidase H8 destruction of heme occurred and a substantial fraction of the enzyme is irreversibly inactivated. However, the rest of the enzyme forms a relatively stable ferrous–nitric oxide (NO) complex. Although this complex appears to be an inactivated form of the enzyme, we have shown that, when present as the ferrous–NO complex, the enzyme is actually protected from inactivation. The lignin peroxidase ferrous–NO complex reverts slowly (
t
1/2= 6.3 × 10
3s) to the ferric form. Reversion is accelerated if the complex is chromatographed on a PD-10 (Sephadex G-25) column or if veratryl alcohol is added. If azide and hydrogen peroxide (a required cosubstrate) are present (or added), the enzyme undergoes another cycle of catalysis and further inactivation. A detailed reaction mechanism is proposed that is consistent with our experimental observations, the chemistry of azide, and our current understanding of peroxidases. |
doi_str_mv | 10.1006/abbi.1996.9839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_78897234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986196998392</els_id><sourcerecordid>78897234</sourcerecordid><originalsourceid>FETCH-LOGICAL-e277t-d8ae1bffef1460715f72acb22295071fd03514de282100da14db9d5ea717afbb3</originalsourceid><addsrcrecordid>eNpFUU1rGzEQFSUldZNeeyvolNu6I613tTqGUCcBQwNOzkJajeIp3pUr7Ya6v74yMfQ0H29mmPceY18FLAVA-906R0uhdbvUXa0_sIUA3VZQd6sLtgCAutJdKz6xzzn_AhBi1cpLdqmhaWUDC0brOU07THw7zZ4w8zjyUvPH0fYTvdmJSsMd-TZ6mgd--5c88hj4hl5HGvkTpviHvM3IQ4oDf9rZsbT6ncUJeb9LxxzzIaaye80-BrvP-OUcr9jL-sfz3UO1-Xn_eHe7qVAqNVW-syhcCBjKq6BEE5S0vZNS6qaUwUPdiJVH2cnC39uSO-0btEooG5yrr9jN-91Dir9nzJMZKPe435fP4pyN6jqtZL0qg9_Og7Mb0JtDosGmozlr8x8PNhr7miibl21RWkEDWomCd-84FjZvhMnknnDs0VPCfjI-khFgTi6Zk0vm5JI5uVT_A0Lmg-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78897234</pqid></control><display><type>article</type><title>Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Tatarko, Matthew ; Bumpus, John A</creator><creatorcontrib>Tatarko, Matthew ; Bumpus, John A</creatorcontrib><description>Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano
et al.(1988)
Biochemistry27, 5470–5476] and the peroxidase from the coprophilic fungus
Coprinus macrorhizus[DePillis and Ortiz de Montellano (1989)
Biochemistry28, 7947–7952]. These peroxidases mediate the one-electron oxidation of azide ion-forming azidyl radical. Inactivation of these enzymes is caused by covalent modification of the heme prosthetic groups by azidyl radical. Lignin peroxidases from the wood-rotting fungus
Phanerochaete chrysosporiumare also inactivated when they catalyze oxidation of azide ion [Tuisel
et al.(1991)
Arch. Biochem. Biophys.288, 456–462; DePillis
et al.(1990)
Arch. Biochem. Biophys.280, 217–223]. Following inactivation of horseradish peroxidase and the peroxidase from
C. macrorhizussubstantial amounts of azidyl-heme adducts have been found. Only trace amounts of such adducts have been found following azide-mediated inactivation of lignin peroxidase. Nevertheless, we have shown that during oxidation of azide by lignin peroxidase H8 destruction of heme occurred and a substantial fraction of the enzyme is irreversibly inactivated. However, the rest of the enzyme forms a relatively stable ferrous–nitric oxide (NO) complex. Although this complex appears to be an inactivated form of the enzyme, we have shown that, when present as the ferrous–NO complex, the enzyme is actually protected from inactivation. The lignin peroxidase ferrous–NO complex reverts slowly (
t
1/2= 6.3 × 10
3s) to the ferric form. Reversion is accelerated if the complex is chromatographed on a PD-10 (Sephadex G-25) column or if veratryl alcohol is added. If azide and hydrogen peroxide (a required cosubstrate) are present (or added), the enzyme undergoes another cycle of catalysis and further inactivation. A detailed reaction mechanism is proposed that is consistent with our experimental observations, the chemistry of azide, and our current understanding of peroxidases.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1006/abbi.1996.9839</identifier><identifier>PMID: 9056250</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>azide ; Azides - chemistry ; Azides - pharmacology ; Basidiomycota - enzymology ; Ferric Compounds - chemistry ; Ferrous Compounds - chemistry ; ferrous–NO complex ; Heme - chemistry ; hemeproteins ; Hydrogen Peroxide - chemistry ; lignin peroxidase ; LIGNINAS ; LIGNINE ; LIGNINOLYTIC MICROORGANISMS ; LIGNINS ; MICROORGANISME ; MICROORGANISMOS ; MICROORGANISMS ; nitric oxide ; Nitrous Oxide - chemistry ; Nitrous Oxide - metabolism ; Oxidation-Reduction ; Peroxidases - antagonists & inhibitors ; Peroxidases - chemistry ; Phanerochaete chrysosporium ; Spectrum Analysis</subject><ispartof>Archives of biochemistry and biophysics, 1997-03, Vol.339 (1), p.200-209</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003986196998392$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9056250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tatarko, Matthew</creatorcontrib><creatorcontrib>Bumpus, John A</creatorcontrib><title>Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium</title><title>Archives of biochemistry and biophysics</title><addtitle>Arch Biochem Biophys</addtitle><description>Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano
et al.(1988)
Biochemistry27, 5470–5476] and the peroxidase from the coprophilic fungus
Coprinus macrorhizus[DePillis and Ortiz de Montellano (1989)
Biochemistry28, 7947–7952]. These peroxidases mediate the one-electron oxidation of azide ion-forming azidyl radical. Inactivation of these enzymes is caused by covalent modification of the heme prosthetic groups by azidyl radical. Lignin peroxidases from the wood-rotting fungus
Phanerochaete chrysosporiumare also inactivated when they catalyze oxidation of azide ion [Tuisel
et al.(1991)
Arch. Biochem. Biophys.288, 456–462; DePillis
et al.(1990)
Arch. Biochem. Biophys.280, 217–223]. Following inactivation of horseradish peroxidase and the peroxidase from
C. macrorhizussubstantial amounts of azidyl-heme adducts have been found. Only trace amounts of such adducts have been found following azide-mediated inactivation of lignin peroxidase. Nevertheless, we have shown that during oxidation of azide by lignin peroxidase H8 destruction of heme occurred and a substantial fraction of the enzyme is irreversibly inactivated. However, the rest of the enzyme forms a relatively stable ferrous–nitric oxide (NO) complex. Although this complex appears to be an inactivated form of the enzyme, we have shown that, when present as the ferrous–NO complex, the enzyme is actually protected from inactivation. The lignin peroxidase ferrous–NO complex reverts slowly (
t
1/2= 6.3 × 10
3s) to the ferric form. Reversion is accelerated if the complex is chromatographed on a PD-10 (Sephadex G-25) column or if veratryl alcohol is added. If azide and hydrogen peroxide (a required cosubstrate) are present (or added), the enzyme undergoes another cycle of catalysis and further inactivation. A detailed reaction mechanism is proposed that is consistent with our experimental observations, the chemistry of azide, and our current understanding of peroxidases.</description><subject>azide</subject><subject>Azides - chemistry</subject><subject>Azides - pharmacology</subject><subject>Basidiomycota - enzymology</subject><subject>Ferric Compounds - chemistry</subject><subject>Ferrous Compounds - chemistry</subject><subject>ferrous–NO complex</subject><subject>Heme - chemistry</subject><subject>hemeproteins</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>lignin peroxidase</subject><subject>LIGNINAS</subject><subject>LIGNINE</subject><subject>LIGNINOLYTIC MICROORGANISMS</subject><subject>LIGNINS</subject><subject>MICROORGANISME</subject><subject>MICROORGANISMOS</subject><subject>MICROORGANISMS</subject><subject>nitric oxide</subject><subject>Nitrous Oxide - chemistry</subject><subject>Nitrous Oxide - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Peroxidases - antagonists & inhibitors</subject><subject>Peroxidases - chemistry</subject><subject>Phanerochaete chrysosporium</subject><subject>Spectrum Analysis</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFUU1rGzEQFSUldZNeeyvolNu6I613tTqGUCcBQwNOzkJajeIp3pUr7Ya6v74yMfQ0H29mmPceY18FLAVA-906R0uhdbvUXa0_sIUA3VZQd6sLtgCAutJdKz6xzzn_AhBi1cpLdqmhaWUDC0brOU07THw7zZ4w8zjyUvPH0fYTvdmJSsMd-TZ6mgd--5c88hj4hl5HGvkTpviHvM3IQ4oDf9rZsbT6ncUJeb9LxxzzIaaye80-BrvP-OUcr9jL-sfz3UO1-Xn_eHe7qVAqNVW-syhcCBjKq6BEE5S0vZNS6qaUwUPdiJVH2cnC39uSO-0btEooG5yrr9jN-91Dir9nzJMZKPe435fP4pyN6jqtZL0qg9_Og7Mb0JtDosGmozlr8x8PNhr7miibl21RWkEDWomCd-84FjZvhMnknnDs0VPCfjI-khFgTi6Zk0vm5JI5uVT_A0Lmg-c</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Tatarko, Matthew</creator><creator>Bumpus, John A</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>19970301</creationdate><title>Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium</title><author>Tatarko, Matthew ; Bumpus, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e277t-d8ae1bffef1460715f72acb22295071fd03514de282100da14db9d5ea717afbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>azide</topic><topic>Azides - chemistry</topic><topic>Azides - pharmacology</topic><topic>Basidiomycota - enzymology</topic><topic>Ferric Compounds - chemistry</topic><topic>Ferrous Compounds - chemistry</topic><topic>ferrous–NO complex</topic><topic>Heme - chemistry</topic><topic>hemeproteins</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>lignin peroxidase</topic><topic>LIGNINAS</topic><topic>LIGNINE</topic><topic>LIGNINOLYTIC MICROORGANISMS</topic><topic>LIGNINS</topic><topic>MICROORGANISME</topic><topic>MICROORGANISMOS</topic><topic>MICROORGANISMS</topic><topic>nitric oxide</topic><topic>Nitrous Oxide - chemistry</topic><topic>Nitrous Oxide - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Peroxidases - antagonists & inhibitors</topic><topic>Peroxidases - chemistry</topic><topic>Phanerochaete chrysosporium</topic><topic>Spectrum Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tatarko, Matthew</creatorcontrib><creatorcontrib>Bumpus, John A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tatarko, Matthew</au><au>Bumpus, John A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium</atitle><jtitle>Archives of biochemistry and biophysics</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>339</volume><issue>1</issue><spage>200</spage><epage>209</epage><pages>200-209</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano
et al.(1988)
Biochemistry27, 5470–5476] and the peroxidase from the coprophilic fungus
Coprinus macrorhizus[DePillis and Ortiz de Montellano (1989)
Biochemistry28, 7947–7952]. These peroxidases mediate the one-electron oxidation of azide ion-forming azidyl radical. Inactivation of these enzymes is caused by covalent modification of the heme prosthetic groups by azidyl radical. Lignin peroxidases from the wood-rotting fungus
Phanerochaete chrysosporiumare also inactivated when they catalyze oxidation of azide ion [Tuisel
et al.(1991)
Arch. Biochem. Biophys.288, 456–462; DePillis
et al.(1990)
Arch. Biochem. Biophys.280, 217–223]. Following inactivation of horseradish peroxidase and the peroxidase from
C. macrorhizussubstantial amounts of azidyl-heme adducts have been found. Only trace amounts of such adducts have been found following azide-mediated inactivation of lignin peroxidase. Nevertheless, we have shown that during oxidation of azide by lignin peroxidase H8 destruction of heme occurred and a substantial fraction of the enzyme is irreversibly inactivated. However, the rest of the enzyme forms a relatively stable ferrous–nitric oxide (NO) complex. Although this complex appears to be an inactivated form of the enzyme, we have shown that, when present as the ferrous–NO complex, the enzyme is actually protected from inactivation. The lignin peroxidase ferrous–NO complex reverts slowly (
t
1/2= 6.3 × 10
3s) to the ferric form. Reversion is accelerated if the complex is chromatographed on a PD-10 (Sephadex G-25) column or if veratryl alcohol is added. If azide and hydrogen peroxide (a required cosubstrate) are present (or added), the enzyme undergoes another cycle of catalysis and further inactivation. A detailed reaction mechanism is proposed that is consistent with our experimental observations, the chemistry of azide, and our current understanding of peroxidases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9056250</pmid><doi>10.1006/abbi.1996.9839</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9861 |
ispartof | Archives of biochemistry and biophysics, 1997-03, Vol.339 (1), p.200-209 |
issn | 0003-9861 1096-0384 |
language | eng |
recordid | cdi_proquest_miscellaneous_78897234 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | azide Azides - chemistry Azides - pharmacology Basidiomycota - enzymology Ferric Compounds - chemistry Ferrous Compounds - chemistry ferrous–NO complex Heme - chemistry hemeproteins Hydrogen Peroxide - chemistry lignin peroxidase LIGNINAS LIGNINE LIGNINOLYTIC MICROORGANISMS LIGNINS MICROORGANISME MICROORGANISMOS MICROORGANISMS nitric oxide Nitrous Oxide - chemistry Nitrous Oxide - metabolism Oxidation-Reduction Peroxidases - antagonists & inhibitors Peroxidases - chemistry Phanerochaete chrysosporium Spectrum Analysis |
title | Further Studies on the Inactivation by Sodium Azide of Lignin Peroxidase from Phanerochaete chrysosporium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20Studies%20on%20the%20Inactivation%20by%20Sodium%20Azide%20of%20Lignin%20Peroxidase%20from%20Phanerochaete%20chrysosporium&rft.jtitle=Archives%20of%20biochemistry%20and%20biophysics&rft.au=Tatarko,%20Matthew&rft.date=1997-03-01&rft.volume=339&rft.issue=1&rft.spage=200&rft.epage=209&rft.pages=200-209&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1006/abbi.1996.9839&rft_dat=%3Cproquest_pubme%3E78897234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78897234&rft_id=info:pmid/9056250&rft_els_id=S0003986196998392&rfr_iscdi=true |