Steady State Kinetics of Proton Translocation Catalyzed by Thermophilic F0F1-ATPase Reconstituted in Planar Bilayer Membranes
The proton-translocating ATPase of the thermophilic bacterium PS3 was reconstituted into planar phospholipid bilayers by the previously reported method (Hirata, H., Ohno, K., Sone, N., Kagawa, Y., and Hamamoto, T. (1986) J. Biol. Chem. 261, 9839–9843), and the relationship between the electric curre...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1989-04, Vol.264 (11), p.6092-6096 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6096 |
---|---|
container_issue | 11 |
container_start_page | 6092 |
container_title | The Journal of biological chemistry |
container_volume | 264 |
creator | Muneyuki, E Kagawa, Y Hirata, H |
description | The proton-translocating ATPase of the thermophilic bacterium PS3 was reconstituted into planar phospholipid bilayers by the previously reported method (Hirata, H., Ohno, K., Sone, N., Kagawa, Y., and Hamamoto, T. (1986) J. Biol. Chem. 261, 9839–9843), and the relationship between the electric current induced by ATP and the concentration of ATP was examined. The magnitude of the electric current generated upon addition of ATP followed simple Michaelis-Menten type kinetics, and the Michaelis constant was found to be 0.14 mM under our conditions. This value is close to the values reported for F1- or F0F1-ATPase in its steady state catalytic cycle, indicating that the proton translocation is coupled to the steady state ATPase reaction.
The relationship between the Km value and the membrane potential was also examined under the voltage-clamped condition, and we found that there was no apparent dependence of the Km on membrane voltage. These results together with the previous data suggest that the voltage dependence residues in some step that defines the apparent Vmax rather than Km in the reaction cycle, and proton translocation is not directly coupled to this ATP binding step. |
doi_str_mv | 10.1016/S0021-9258(18)83317-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78894559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818833178</els_id><sourcerecordid>78894559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-ee1c8eb3056ee0e84a3847e45d4e31a9e26858ad7e0f625f9247feb690e8d39a3</originalsourceid><addsrcrecordid>eNqFkN-L1DAQgIMo57r6JxwEFNGHan40bfJ0nIur4omLu4JvIU2nNtI2a5JVKvi_m7td9tU8TAjzzWTmQ-iSkleU0Or1lhBGC8WEfEHlS8k5rQt5Dy0okbzggn67jxZn5CF6FOMPkk-p6AW6YIIxxeQC_d0mMO2Mt8kkwB_dBMnZiH2HN8EnP-FdMFMcvDXJ5dfKJDPMf6DFzYx3PYTR73s3OIvXZE2L693GRMBfwPopJpcOKZNuwpvBTCbgN24wMwT8CcYmt4X4GD3ozBDhyeleoq_rt7vV--Lm87sPq-ubwgpOUgFArYSGE1EBEJCl4bKsoRRtCZwaBaySQpq2BtJVTHSKlXUHTaUy23Jl-BI9P_bdB__zADHp0UULQx4L_CHqWkpVCqEyKI6gDT7GAJ3eBzeaMGtK9K12fadd3zrVVOo77Tku0eXpg0MzQnuuOnnO-WenvInWDF3e3rp4xmpOiZA0Y0-PWO--979dAN04b3sYNatKTamuiGKZujpSkJX9chB0tA4mC22usEm33v1n3H8liqtf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78894559</pqid></control><display><type>article</type><title>Steady State Kinetics of Proton Translocation Catalyzed by Thermophilic F0F1-ATPase Reconstituted in Planar Bilayer Membranes</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Muneyuki, E ; Kagawa, Y ; Hirata, H</creator><creatorcontrib>Muneyuki, E ; Kagawa, Y ; Hirata, H</creatorcontrib><description>The proton-translocating ATPase of the thermophilic bacterium PS3 was reconstituted into planar phospholipid bilayers by the previously reported method (Hirata, H., Ohno, K., Sone, N., Kagawa, Y., and Hamamoto, T. (1986) J. Biol. Chem. 261, 9839–9843), and the relationship between the electric current induced by ATP and the concentration of ATP was examined. The magnitude of the electric current generated upon addition of ATP followed simple Michaelis-Menten type kinetics, and the Michaelis constant was found to be 0.14 mM under our conditions. This value is close to the values reported for F1- or F0F1-ATPase in its steady state catalytic cycle, indicating that the proton translocation is coupled to the steady state ATPase reaction.
The relationship between the Km value and the membrane potential was also examined under the voltage-clamped condition, and we found that there was no apparent dependence of the Km on membrane voltage. These results together with the previous data suggest that the voltage dependence residues in some step that defines the apparent Vmax rather than Km in the reaction cycle, and proton translocation is not directly coupled to this ATP binding step.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)83317-8</identifier><identifier>PMID: 2522928</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Artificial membranes and reconstituted systems ; Bacteria - enzymology ; Biological and medical sciences ; Biological Transport, Active ; Electric Conductivity ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Kinetics ; Lipid Bilayers ; Membrane physicochemistry ; Membrane Potentials ; Molecular biophysics ; Proton-Translocating ATPases - metabolism</subject><ispartof>The Journal of biological chemistry, 1989-04, Vol.264 (11), p.6092-6096</ispartof><rights>1989 © 1989 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-ee1c8eb3056ee0e84a3847e45d4e31a9e26858ad7e0f625f9247feb690e8d39a3</citedby><cites>FETCH-LOGICAL-c530t-ee1c8eb3056ee0e84a3847e45d4e31a9e26858ad7e0f625f9247feb690e8d39a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7310581$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2522928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muneyuki, E</creatorcontrib><creatorcontrib>Kagawa, Y</creatorcontrib><creatorcontrib>Hirata, H</creatorcontrib><title>Steady State Kinetics of Proton Translocation Catalyzed by Thermophilic F0F1-ATPase Reconstituted in Planar Bilayer Membranes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The proton-translocating ATPase of the thermophilic bacterium PS3 was reconstituted into planar phospholipid bilayers by the previously reported method (Hirata, H., Ohno, K., Sone, N., Kagawa, Y., and Hamamoto, T. (1986) J. Biol. Chem. 261, 9839–9843), and the relationship between the electric current induced by ATP and the concentration of ATP was examined. The magnitude of the electric current generated upon addition of ATP followed simple Michaelis-Menten type kinetics, and the Michaelis constant was found to be 0.14 mM under our conditions. This value is close to the values reported for F1- or F0F1-ATPase in its steady state catalytic cycle, indicating that the proton translocation is coupled to the steady state ATPase reaction.
The relationship between the Km value and the membrane potential was also examined under the voltage-clamped condition, and we found that there was no apparent dependence of the Km on membrane voltage. These results together with the previous data suggest that the voltage dependence residues in some step that defines the apparent Vmax rather than Km in the reaction cycle, and proton translocation is not directly coupled to this ATP binding step.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Artificial membranes and reconstituted systems</subject><subject>Bacteria - enzymology</subject><subject>Biological and medical sciences</subject><subject>Biological Transport, Active</subject><subject>Electric Conductivity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>Hydrogen-Ion Concentration</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Lipid Bilayers</subject><subject>Membrane physicochemistry</subject><subject>Membrane Potentials</subject><subject>Molecular biophysics</subject><subject>Proton-Translocating ATPases - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkN-L1DAQgIMo57r6JxwEFNGHan40bfJ0nIur4omLu4JvIU2nNtI2a5JVKvi_m7td9tU8TAjzzWTmQ-iSkleU0Or1lhBGC8WEfEHlS8k5rQt5Dy0okbzggn67jxZn5CF6FOMPkk-p6AW6YIIxxeQC_d0mMO2Mt8kkwB_dBMnZiH2HN8EnP-FdMFMcvDXJ5dfKJDPMf6DFzYx3PYTR73s3OIvXZE2L693GRMBfwPopJpcOKZNuwpvBTCbgN24wMwT8CcYmt4X4GD3ozBDhyeleoq_rt7vV--Lm87sPq-ubwgpOUgFArYSGE1EBEJCl4bKsoRRtCZwaBaySQpq2BtJVTHSKlXUHTaUy23Jl-BI9P_bdB__zADHp0UULQx4L_CHqWkpVCqEyKI6gDT7GAJ3eBzeaMGtK9K12fadd3zrVVOo77Tku0eXpg0MzQnuuOnnO-WenvInWDF3e3rp4xmpOiZA0Y0-PWO--979dAN04b3sYNatKTamuiGKZujpSkJX9chB0tA4mC22usEm33v1n3H8liqtf</recordid><startdate>19890415</startdate><enddate>19890415</enddate><creator>Muneyuki, E</creator><creator>Kagawa, Y</creator><creator>Hirata, H</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19890415</creationdate><title>Steady State Kinetics of Proton Translocation Catalyzed by Thermophilic F0F1-ATPase Reconstituted in Planar Bilayer Membranes</title><author>Muneyuki, E ; Kagawa, Y ; Hirata, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-ee1c8eb3056ee0e84a3847e45d4e31a9e26858ad7e0f625f9247feb690e8d39a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Artificial membranes and reconstituted systems</topic><topic>Bacteria - enzymology</topic><topic>Biological and medical sciences</topic><topic>Biological Transport, Active</topic><topic>Electric Conductivity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>Hydrogen-Ion Concentration</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Lipid Bilayers</topic><topic>Membrane physicochemistry</topic><topic>Membrane Potentials</topic><topic>Molecular biophysics</topic><topic>Proton-Translocating ATPases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muneyuki, E</creatorcontrib><creatorcontrib>Kagawa, Y</creatorcontrib><creatorcontrib>Hirata, H</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muneyuki, E</au><au>Kagawa, Y</au><au>Hirata, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady State Kinetics of Proton Translocation Catalyzed by Thermophilic F0F1-ATPase Reconstituted in Planar Bilayer Membranes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1989-04-15</date><risdate>1989</risdate><volume>264</volume><issue>11</issue><spage>6092</spage><epage>6096</epage><pages>6092-6096</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>The proton-translocating ATPase of the thermophilic bacterium PS3 was reconstituted into planar phospholipid bilayers by the previously reported method (Hirata, H., Ohno, K., Sone, N., Kagawa, Y., and Hamamoto, T. (1986) J. Biol. Chem. 261, 9839–9843), and the relationship between the electric current induced by ATP and the concentration of ATP was examined. The magnitude of the electric current generated upon addition of ATP followed simple Michaelis-Menten type kinetics, and the Michaelis constant was found to be 0.14 mM under our conditions. This value is close to the values reported for F1- or F0F1-ATPase in its steady state catalytic cycle, indicating that the proton translocation is coupled to the steady state ATPase reaction.
The relationship between the Km value and the membrane potential was also examined under the voltage-clamped condition, and we found that there was no apparent dependence of the Km on membrane voltage. These results together with the previous data suggest that the voltage dependence residues in some step that defines the apparent Vmax rather than Km in the reaction cycle, and proton translocation is not directly coupled to this ATP binding step.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>2522928</pmid><doi>10.1016/S0021-9258(18)83317-8</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1989-04, Vol.264 (11), p.6092-6096 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_78894559 |
source | MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Adenosine Triphosphate - metabolism Artificial membranes and reconstituted systems Bacteria - enzymology Biological and medical sciences Biological Transport, Active Electric Conductivity Fundamental and applied biological sciences. Psychology Hot Temperature Hydrogen-Ion Concentration In Vitro Techniques Kinetics Lipid Bilayers Membrane physicochemistry Membrane Potentials Molecular biophysics Proton-Translocating ATPases - metabolism |
title | Steady State Kinetics of Proton Translocation Catalyzed by Thermophilic F0F1-ATPase Reconstituted in Planar Bilayer Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20State%20Kinetics%20of%20Proton%20Translocation%20Catalyzed%20by%20Thermophilic%20F0F1-ATPase%20Reconstituted%20in%20Planar%20Bilayer%20Membranes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Muneyuki,%20E&rft.date=1989-04-15&rft.volume=264&rft.issue=11&rft.spage=6092&rft.epage=6096&rft.pages=6092-6096&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)83317-8&rft_dat=%3Cproquest_cross%3E78894559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78894559&rft_id=info:pmid/2522928&rft_els_id=S0021925818833178&rfr_iscdi=true |