Effect of streptozotocin-induced maternal diabetes on fetal rat brain glucose transporters
Glucose, an essential substrate for brain oxidative metabolism, is transported across the blood-brain barrier and into neuronal and glial cells via Glut 1 and Glut 3 facilitative glucose transporter isoforms. To examine the effect of excessive circulating glucose on fetal brain glucose transporter e...
Gespeichert in:
Veröffentlicht in: | Pediatric research 1997-03, Vol.41 (3), p.346-352 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glucose, an essential substrate for brain oxidative metabolism, is transported across the blood-brain barrier and into neuronal and glial cells via Glut 1 and Glut 3 facilitative glucose transporter isoforms. To examine the effect of excessive circulating glucose on fetal brain glucose transporter expression, we investigated the effect of streptozotocin-induced maternal diabetes (SEVERE-D; n = 29) on the 20-d gestation fetal rat brain Glut 1 and Glut 3. We studied the effect of streptozotocin alone (STZ-ND; n = 12) in a nondiabetic state as well, along with vehicle injected controls (C; n = 24). In the presence of fetal hyperglycemia (12.63 +/- 0.82 nM-SEVERE-D versus 2.35 +/- 0.28-STZ-ND and 2.42 +/- 0.16-C; p < 0.001) and hypoinsulinemia (0.38 +/- 0.03 nM-SEVERE-D versus 0.50 +/- 0.07-STZ-ND and 0.55 +/- 0.06-C; p < 0.02), no detectable change in fetal brain Glut 1 and Glut 3 pretranslational expression (transcription/elongation rates and corresponding steady state mRNA levels) was noted when simultaneously compared with the STZ-ND and C groups. In contrast, a trend toward a decline in Glut 1 (approximately 25 to 30%, p = 0.05) and a substantive decrease in Glut 3 (approximately 35 to 50%, p = 0.0006) protein concentrations was present in both the STZ-ND and SEVERE-D groups when compared with the C group. These observations support a chemical effect of streptozotocin independent of maternal diabetes upon the translation or posttranslational processing of fetal brain glucose transporters. Maternal diabetes with fetal hyperglycemia, however, failed to substantively alter fetal brain glucose transporters independent of the streptozotocin effects upon neuroectodermally derived tissues. We conclude that maternal diabetes with associated overt fetal hyperglycemia does not significantly change fetal brain glucose transporter levels. |
---|---|
ISSN: | 0031-3998 1530-0447 |
DOI: | 10.1203/00006450-199703000-00007 |