Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos
32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of Xenopus laevis, and the 32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and t...
Gespeichert in:
Veröffentlicht in: | Dev. Biol.; (United States) 1989-04, Vol.132 (2), p.512-523 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 523 |
---|---|
container_issue | 2 |
container_start_page | 512 |
container_title | Dev. Biol.; (United States) |
container_volume | 132 |
creator | Dworkin, Mark B. Dworkin-Rastl, Eva |
description | 32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of
Xenopus laevis, and the
32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose. |
doi_str_mv | 10.1016/0012-1606(89)90246-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_78887962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0012160689902467</els_id><sourcerecordid>78887962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-50582a0ff947efeff6ca285d5742f12f4bb2bba36f5673bdbc9c9416b2f96ce23</originalsourceid><addsrcrecordid>eNp9kVGL1TAQhYMo693Vf6AQRETBapK2aeKDsCy6Ciu-KOxbSNJJjaTJ3aRd7L-39V7uoy8zD_Odw8wZhJ5R8o4Syt8TQllFOeGvhXwjCWt41T1AO0pkW7W8uX2IdifkMTov5TchpBaiPkNnrK1F3TU75L_BpE0K3uIMwxz05FPE_Zx9HDDoHBbschpwD_cQ0n6EOH3A12GxaYC4ilyY_2Af8S3EtJ8LTskuE5S3GIZhrTr2GEaTl1SeoEdOhwJPj_0C_fz86cfVl-rm-_XXq8ubyja0nqqWtIJp4pxsOnDgHLeaibZvu4Y5ylxjDDNG19y1vKtNb6y0sqHcMCe5BVZfoBcH31Qmr4r1E9hfNsUIdlJ8TY5wsUKvDtA-p7sZyqRGXyyEoCOkuahOCNFJvrk1B9DmVEoGp_bZjzovihK1vUFtGastYyWk-vcG1a2y50f_2YzQn0TH3Nf5y-NcF6uDyzpaX04YF4IyvmEfDxisgd17yNs9EC30Pm_n9Mn_f4-_tcikqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78887962</pqid></control><display><type>article</type><title>Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Dworkin, Mark B. ; Dworkin-Rastl, Eva</creator><creatorcontrib>Dworkin, Mark B. ; Dworkin-Rastl, Eva ; Ernst Boehringer Institut, Vienna (Austria)</creatorcontrib><description>32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of
Xenopus laevis, and the
32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/0012-1606(89)90246-7</identifier><identifier>PMID: 2538374</identifier><identifier>CODEN: DEBIAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>550501 - Metabolism- Tracer Techniques ; ALDEHYDES ; AMPHIBIANS ; ANIMALS ; AQUATIC ORGANISMS ; BASIC BIOLOGICAL SCIENCES ; BETA DECAY RADIOISOTOPES ; BETA-MINUS DECAY RADIOISOTOPES ; Biological and medical sciences ; BIOLOGICAL PATHWAYS ; BIOSYNTHESIS ; CARBOHYDRATES ; CARBON ; Carbon - metabolism ; Chromatography, Paper ; DAYS LIVING RADIOISOTOPES ; ELEMENTS ; Embryology: invertebrates and vertebrates. Teratology ; ENZYMES ; FROGS ; Fundamental and applied biological sciences. Psychology ; General aspects. Development. Fetal membranes ; GERM CELLS ; GLUCOSE ; Glucose-6-Phosphate ; Glucosephosphates - metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenases - antagonists & inhibitors ; Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism ; GLYCOGEN ; Glycogen - metabolism ; GLYCOLYSIS ; Glycolysis - drug effects ; HEXOSES ; Iodoacetamide - pharmacology ; Iodoacetates - pharmacology ; Iodoacetic Acid ; ISOTOPE APPLICATIONS ; ISOTOPES ; Kinetics ; LIGHT NUCLEI ; METABOLISM ; METABOLITES ; MONOSACCHARIDES ; NONMETALS ; NUCLEI ; ODD-ODD NUCLEI ; ONTOGENESIS ; OOCYTES ; Oocytes - metabolism ; ORGANIC COMPOUNDS ; PHOSPHOENOLPYRUVATE ; Phosphoenolpyruvate - metabolism ; Phosphoglucomutase - metabolism ; Phosphoglycerate Mutase - metabolism ; PHOSPHORUS 32 ; PHOSPHORUS ISOTOPES ; Phosphorus Radioisotopes ; PHOSPHORUS-GROUP TRANSFERASES ; PHOSPHOTRANSFERASES ; POLYSACCHARIDES ; Pyruvate Kinase - metabolism ; RADIOISOTOPES ; SACCHARIDES ; SYNTHESIS ; TRACER TECHNIQUES ; TRANSFERASES ; Uridine Diphosphate Glucose - metabolism ; VERTEBRATES ; Xenopus laevis - embryology ; Xenopus laevis - metabolism ; Zygote - metabolism</subject><ispartof>Dev. Biol.; (United States), 1989-04, Vol.132 (2), p.512-523</ispartof><rights>1989</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-50582a0ff947efeff6ca285d5742f12f4bb2bba36f5673bdbc9c9416b2f96ce23</citedby><cites>FETCH-LOGICAL-c413t-50582a0ff947efeff6ca285d5742f12f4bb2bba36f5673bdbc9c9416b2f96ce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0012-1606(89)90246-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6881264$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2538374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6101068$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dworkin, Mark B.</creatorcontrib><creatorcontrib>Dworkin-Rastl, Eva</creatorcontrib><creatorcontrib>Ernst Boehringer Institut, Vienna (Austria)</creatorcontrib><title>Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos</title><title>Dev. Biol.; (United States)</title><addtitle>Dev Biol</addtitle><description>32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of
Xenopus laevis, and the
32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose.</description><subject>550501 - Metabolism- Tracer Techniques</subject><subject>ALDEHYDES</subject><subject>AMPHIBIANS</subject><subject>ANIMALS</subject><subject>AQUATIC ORGANISMS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BETA DECAY RADIOISOTOPES</subject><subject>BETA-MINUS DECAY RADIOISOTOPES</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL PATHWAYS</subject><subject>BIOSYNTHESIS</subject><subject>CARBOHYDRATES</subject><subject>CARBON</subject><subject>Carbon - metabolism</subject><subject>Chromatography, Paper</subject><subject>DAYS LIVING RADIOISOTOPES</subject><subject>ELEMENTS</subject><subject>Embryology: invertebrates and vertebrates. Teratology</subject><subject>ENZYMES</subject><subject>FROGS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Development. Fetal membranes</subject><subject>GERM CELLS</subject><subject>GLUCOSE</subject><subject>Glucose-6-Phosphate</subject><subject>Glucosephosphates - metabolism</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - antagonists & inhibitors</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism</subject><subject>GLYCOGEN</subject><subject>Glycogen - metabolism</subject><subject>GLYCOLYSIS</subject><subject>Glycolysis - drug effects</subject><subject>HEXOSES</subject><subject>Iodoacetamide - pharmacology</subject><subject>Iodoacetates - pharmacology</subject><subject>Iodoacetic Acid</subject><subject>ISOTOPE APPLICATIONS</subject><subject>ISOTOPES</subject><subject>Kinetics</subject><subject>LIGHT NUCLEI</subject><subject>METABOLISM</subject><subject>METABOLITES</subject><subject>MONOSACCHARIDES</subject><subject>NONMETALS</subject><subject>NUCLEI</subject><subject>ODD-ODD NUCLEI</subject><subject>ONTOGENESIS</subject><subject>OOCYTES</subject><subject>Oocytes - metabolism</subject><subject>ORGANIC COMPOUNDS</subject><subject>PHOSPHOENOLPYRUVATE</subject><subject>Phosphoenolpyruvate - metabolism</subject><subject>Phosphoglucomutase - metabolism</subject><subject>Phosphoglycerate Mutase - metabolism</subject><subject>PHOSPHORUS 32</subject><subject>PHOSPHORUS ISOTOPES</subject><subject>Phosphorus Radioisotopes</subject><subject>PHOSPHORUS-GROUP TRANSFERASES</subject><subject>PHOSPHOTRANSFERASES</subject><subject>POLYSACCHARIDES</subject><subject>Pyruvate Kinase - metabolism</subject><subject>RADIOISOTOPES</subject><subject>SACCHARIDES</subject><subject>SYNTHESIS</subject><subject>TRACER TECHNIQUES</subject><subject>TRANSFERASES</subject><subject>Uridine Diphosphate Glucose - metabolism</subject><subject>VERTEBRATES</subject><subject>Xenopus laevis - embryology</subject><subject>Xenopus laevis - metabolism</subject><subject>Zygote - metabolism</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVGL1TAQhYMo693Vf6AQRETBapK2aeKDsCy6Ciu-KOxbSNJJjaTJ3aRd7L-39V7uoy8zD_Odw8wZhJ5R8o4Syt8TQllFOeGvhXwjCWt41T1AO0pkW7W8uX2IdifkMTov5TchpBaiPkNnrK1F3TU75L_BpE0K3uIMwxz05FPE_Zx9HDDoHBbschpwD_cQ0n6EOH3A12GxaYC4ilyY_2Af8S3EtJ8LTskuE5S3GIZhrTr2GEaTl1SeoEdOhwJPj_0C_fz86cfVl-rm-_XXq8ubyja0nqqWtIJp4pxsOnDgHLeaibZvu4Y5ylxjDDNG19y1vKtNb6y0sqHcMCe5BVZfoBcH31Qmr4r1E9hfNsUIdlJ8TY5wsUKvDtA-p7sZyqRGXyyEoCOkuahOCNFJvrk1B9DmVEoGp_bZjzovihK1vUFtGastYyWk-vcG1a2y50f_2YzQn0TH3Nf5y-NcF6uDyzpaX04YF4IyvmEfDxisgd17yNs9EC30Pm_n9Mn_f4-_tcikqg</recordid><startdate>19890401</startdate><enddate>19890401</enddate><creator>Dworkin, Mark B.</creator><creator>Dworkin-Rastl, Eva</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19890401</creationdate><title>Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos</title><author>Dworkin, Mark B. ; Dworkin-Rastl, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-50582a0ff947efeff6ca285d5742f12f4bb2bba36f5673bdbc9c9416b2f96ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>550501 - Metabolism- Tracer Techniques</topic><topic>ALDEHYDES</topic><topic>AMPHIBIANS</topic><topic>ANIMALS</topic><topic>AQUATIC ORGANISMS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BETA DECAY RADIOISOTOPES</topic><topic>BETA-MINUS DECAY RADIOISOTOPES</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL PATHWAYS</topic><topic>BIOSYNTHESIS</topic><topic>CARBOHYDRATES</topic><topic>CARBON</topic><topic>Carbon - metabolism</topic><topic>Chromatography, Paper</topic><topic>DAYS LIVING RADIOISOTOPES</topic><topic>ELEMENTS</topic><topic>Embryology: invertebrates and vertebrates. Teratology</topic><topic>ENZYMES</topic><topic>FROGS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Development. Fetal membranes</topic><topic>GERM CELLS</topic><topic>GLUCOSE</topic><topic>Glucose-6-Phosphate</topic><topic>Glucosephosphates - metabolism</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - antagonists & inhibitors</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism</topic><topic>GLYCOGEN</topic><topic>Glycogen - metabolism</topic><topic>GLYCOLYSIS</topic><topic>Glycolysis - drug effects</topic><topic>HEXOSES</topic><topic>Iodoacetamide - pharmacology</topic><topic>Iodoacetates - pharmacology</topic><topic>Iodoacetic Acid</topic><topic>ISOTOPE APPLICATIONS</topic><topic>ISOTOPES</topic><topic>Kinetics</topic><topic>LIGHT NUCLEI</topic><topic>METABOLISM</topic><topic>METABOLITES</topic><topic>MONOSACCHARIDES</topic><topic>NONMETALS</topic><topic>NUCLEI</topic><topic>ODD-ODD NUCLEI</topic><topic>ONTOGENESIS</topic><topic>OOCYTES</topic><topic>Oocytes - metabolism</topic><topic>ORGANIC COMPOUNDS</topic><topic>PHOSPHOENOLPYRUVATE</topic><topic>Phosphoenolpyruvate - metabolism</topic><topic>Phosphoglucomutase - metabolism</topic><topic>Phosphoglycerate Mutase - metabolism</topic><topic>PHOSPHORUS 32</topic><topic>PHOSPHORUS ISOTOPES</topic><topic>Phosphorus Radioisotopes</topic><topic>PHOSPHORUS-GROUP TRANSFERASES</topic><topic>PHOSPHOTRANSFERASES</topic><topic>POLYSACCHARIDES</topic><topic>Pyruvate Kinase - metabolism</topic><topic>RADIOISOTOPES</topic><topic>SACCHARIDES</topic><topic>SYNTHESIS</topic><topic>TRACER TECHNIQUES</topic><topic>TRANSFERASES</topic><topic>Uridine Diphosphate Glucose - metabolism</topic><topic>VERTEBRATES</topic><topic>Xenopus laevis - embryology</topic><topic>Xenopus laevis - metabolism</topic><topic>Zygote - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dworkin, Mark B.</creatorcontrib><creatorcontrib>Dworkin-Rastl, Eva</creatorcontrib><creatorcontrib>Ernst Boehringer Institut, Vienna (Austria)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Dev. Biol.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dworkin, Mark B.</au><au>Dworkin-Rastl, Eva</au><aucorp>Ernst Boehringer Institut, Vienna (Austria)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos</atitle><jtitle>Dev. Biol.; (United States)</jtitle><addtitle>Dev Biol</addtitle><date>1989-04-01</date><risdate>1989</risdate><volume>132</volume><issue>2</issue><spage>512</spage><epage>523</epage><pages>512-523</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><coden>DEBIAO</coden><abstract>32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of
Xenopus laevis, and the
32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>2538374</pmid><doi>10.1016/0012-1606(89)90246-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1606 |
ispartof | Dev. Biol.; (United States), 1989-04, Vol.132 (2), p.512-523 |
issn | 0012-1606 1095-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_78887962 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | 550501 - Metabolism- Tracer Techniques ALDEHYDES AMPHIBIANS ANIMALS AQUATIC ORGANISMS BASIC BIOLOGICAL SCIENCES BETA DECAY RADIOISOTOPES BETA-MINUS DECAY RADIOISOTOPES Biological and medical sciences BIOLOGICAL PATHWAYS BIOSYNTHESIS CARBOHYDRATES CARBON Carbon - metabolism Chromatography, Paper DAYS LIVING RADIOISOTOPES ELEMENTS Embryology: invertebrates and vertebrates. Teratology ENZYMES FROGS Fundamental and applied biological sciences. Psychology General aspects. Development. Fetal membranes GERM CELLS GLUCOSE Glucose-6-Phosphate Glucosephosphates - metabolism Glyceraldehyde-3-Phosphate Dehydrogenases - antagonists & inhibitors Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism GLYCOGEN Glycogen - metabolism GLYCOLYSIS Glycolysis - drug effects HEXOSES Iodoacetamide - pharmacology Iodoacetates - pharmacology Iodoacetic Acid ISOTOPE APPLICATIONS ISOTOPES Kinetics LIGHT NUCLEI METABOLISM METABOLITES MONOSACCHARIDES NONMETALS NUCLEI ODD-ODD NUCLEI ONTOGENESIS OOCYTES Oocytes - metabolism ORGANIC COMPOUNDS PHOSPHOENOLPYRUVATE Phosphoenolpyruvate - metabolism Phosphoglucomutase - metabolism Phosphoglycerate Mutase - metabolism PHOSPHORUS 32 PHOSPHORUS ISOTOPES Phosphorus Radioisotopes PHOSPHORUS-GROUP TRANSFERASES PHOSPHOTRANSFERASES POLYSACCHARIDES Pyruvate Kinase - metabolism RADIOISOTOPES SACCHARIDES SYNTHESIS TRACER TECHNIQUES TRANSFERASES Uridine Diphosphate Glucose - metabolism VERTEBRATES Xenopus laevis - embryology Xenopus laevis - metabolism Zygote - metabolism |
title | Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20regulation%20during%20early%20frog%20development:%20Glycogenic%20flux%20in%20Xenopus%20oocytes,%20eggs,%20and%20embryos&rft.jtitle=Dev.%20Biol.;%20(United%20States)&rft.au=Dworkin,%20Mark%20B.&rft.aucorp=Ernst%20Boehringer%20Institut,%20Vienna%20(Austria)&rft.date=1989-04-01&rft.volume=132&rft.issue=2&rft.spage=512&rft.epage=523&rft.pages=512-523&rft.issn=0012-1606&rft.eissn=1095-564X&rft.coden=DEBIAO&rft_id=info:doi/10.1016/0012-1606(89)90246-7&rft_dat=%3Cproquest_osti_%3E78887962%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78887962&rft_id=info:pmid/2538374&rft_els_id=0012160689902467&rfr_iscdi=true |