Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos

32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of Xenopus laevis, and the 32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dev. Biol.; (United States) 1989-04, Vol.132 (2), p.512-523
Hauptverfasser: Dworkin, Mark B., Dworkin-Rastl, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 2
container_start_page 512
container_title Dev. Biol.; (United States)
container_volume 132
creator Dworkin, Mark B.
Dworkin-Rastl, Eva
description 32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of Xenopus laevis, and the 32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose.
doi_str_mv 10.1016/0012-1606(89)90246-7
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_78887962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0012160689902467</els_id><sourcerecordid>78887962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-50582a0ff947efeff6ca285d5742f12f4bb2bba36f5673bdbc9c9416b2f96ce23</originalsourceid><addsrcrecordid>eNp9kVGL1TAQhYMo693Vf6AQRETBapK2aeKDsCy6Ciu-KOxbSNJJjaTJ3aRd7L-39V7uoy8zD_Odw8wZhJ5R8o4Syt8TQllFOeGvhXwjCWt41T1AO0pkW7W8uX2IdifkMTov5TchpBaiPkNnrK1F3TU75L_BpE0K3uIMwxz05FPE_Zx9HDDoHBbschpwD_cQ0n6EOH3A12GxaYC4ilyY_2Af8S3EtJ8LTskuE5S3GIZhrTr2GEaTl1SeoEdOhwJPj_0C_fz86cfVl-rm-_XXq8ubyja0nqqWtIJp4pxsOnDgHLeaibZvu4Y5ylxjDDNG19y1vKtNb6y0sqHcMCe5BVZfoBcH31Qmr4r1E9hfNsUIdlJ8TY5wsUKvDtA-p7sZyqRGXyyEoCOkuahOCNFJvrk1B9DmVEoGp_bZjzovihK1vUFtGastYyWk-vcG1a2y50f_2YzQn0TH3Nf5y-NcF6uDyzpaX04YF4IyvmEfDxisgd17yNs9EC30Pm_n9Mn_f4-_tcikqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78887962</pqid></control><display><type>article</type><title>Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Dworkin, Mark B. ; Dworkin-Rastl, Eva</creator><creatorcontrib>Dworkin, Mark B. ; Dworkin-Rastl, Eva ; Ernst Boehringer Institut, Vienna (Austria)</creatorcontrib><description>32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of Xenopus laevis, and the 32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/0012-1606(89)90246-7</identifier><identifier>PMID: 2538374</identifier><identifier>CODEN: DEBIAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>550501 - Metabolism- Tracer Techniques ; ALDEHYDES ; AMPHIBIANS ; ANIMALS ; AQUATIC ORGANISMS ; BASIC BIOLOGICAL SCIENCES ; BETA DECAY RADIOISOTOPES ; BETA-MINUS DECAY RADIOISOTOPES ; Biological and medical sciences ; BIOLOGICAL PATHWAYS ; BIOSYNTHESIS ; CARBOHYDRATES ; CARBON ; Carbon - metabolism ; Chromatography, Paper ; DAYS LIVING RADIOISOTOPES ; ELEMENTS ; Embryology: invertebrates and vertebrates. Teratology ; ENZYMES ; FROGS ; Fundamental and applied biological sciences. Psychology ; General aspects. Development. Fetal membranes ; GERM CELLS ; GLUCOSE ; Glucose-6-Phosphate ; Glucosephosphates - metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenases - antagonists &amp; inhibitors ; Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism ; GLYCOGEN ; Glycogen - metabolism ; GLYCOLYSIS ; Glycolysis - drug effects ; HEXOSES ; Iodoacetamide - pharmacology ; Iodoacetates - pharmacology ; Iodoacetic Acid ; ISOTOPE APPLICATIONS ; ISOTOPES ; Kinetics ; LIGHT NUCLEI ; METABOLISM ; METABOLITES ; MONOSACCHARIDES ; NONMETALS ; NUCLEI ; ODD-ODD NUCLEI ; ONTOGENESIS ; OOCYTES ; Oocytes - metabolism ; ORGANIC COMPOUNDS ; PHOSPHOENOLPYRUVATE ; Phosphoenolpyruvate - metabolism ; Phosphoglucomutase - metabolism ; Phosphoglycerate Mutase - metabolism ; PHOSPHORUS 32 ; PHOSPHORUS ISOTOPES ; Phosphorus Radioisotopes ; PHOSPHORUS-GROUP TRANSFERASES ; PHOSPHOTRANSFERASES ; POLYSACCHARIDES ; Pyruvate Kinase - metabolism ; RADIOISOTOPES ; SACCHARIDES ; SYNTHESIS ; TRACER TECHNIQUES ; TRANSFERASES ; Uridine Diphosphate Glucose - metabolism ; VERTEBRATES ; Xenopus laevis - embryology ; Xenopus laevis - metabolism ; Zygote - metabolism</subject><ispartof>Dev. Biol.; (United States), 1989-04, Vol.132 (2), p.512-523</ispartof><rights>1989</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-50582a0ff947efeff6ca285d5742f12f4bb2bba36f5673bdbc9c9416b2f96ce23</citedby><cites>FETCH-LOGICAL-c413t-50582a0ff947efeff6ca285d5742f12f4bb2bba36f5673bdbc9c9416b2f96ce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0012-1606(89)90246-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6881264$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2538374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6101068$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dworkin, Mark B.</creatorcontrib><creatorcontrib>Dworkin-Rastl, Eva</creatorcontrib><creatorcontrib>Ernst Boehringer Institut, Vienna (Austria)</creatorcontrib><title>Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos</title><title>Dev. Biol.; (United States)</title><addtitle>Dev Biol</addtitle><description>32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of Xenopus laevis, and the 32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose.</description><subject>550501 - Metabolism- Tracer Techniques</subject><subject>ALDEHYDES</subject><subject>AMPHIBIANS</subject><subject>ANIMALS</subject><subject>AQUATIC ORGANISMS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BETA DECAY RADIOISOTOPES</subject><subject>BETA-MINUS DECAY RADIOISOTOPES</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL PATHWAYS</subject><subject>BIOSYNTHESIS</subject><subject>CARBOHYDRATES</subject><subject>CARBON</subject><subject>Carbon - metabolism</subject><subject>Chromatography, Paper</subject><subject>DAYS LIVING RADIOISOTOPES</subject><subject>ELEMENTS</subject><subject>Embryology: invertebrates and vertebrates. Teratology</subject><subject>ENZYMES</subject><subject>FROGS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Development. Fetal membranes</subject><subject>GERM CELLS</subject><subject>GLUCOSE</subject><subject>Glucose-6-Phosphate</subject><subject>Glucosephosphates - metabolism</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - antagonists &amp; inhibitors</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism</subject><subject>GLYCOGEN</subject><subject>Glycogen - metabolism</subject><subject>GLYCOLYSIS</subject><subject>Glycolysis - drug effects</subject><subject>HEXOSES</subject><subject>Iodoacetamide - pharmacology</subject><subject>Iodoacetates - pharmacology</subject><subject>Iodoacetic Acid</subject><subject>ISOTOPE APPLICATIONS</subject><subject>ISOTOPES</subject><subject>Kinetics</subject><subject>LIGHT NUCLEI</subject><subject>METABOLISM</subject><subject>METABOLITES</subject><subject>MONOSACCHARIDES</subject><subject>NONMETALS</subject><subject>NUCLEI</subject><subject>ODD-ODD NUCLEI</subject><subject>ONTOGENESIS</subject><subject>OOCYTES</subject><subject>Oocytes - metabolism</subject><subject>ORGANIC COMPOUNDS</subject><subject>PHOSPHOENOLPYRUVATE</subject><subject>Phosphoenolpyruvate - metabolism</subject><subject>Phosphoglucomutase - metabolism</subject><subject>Phosphoglycerate Mutase - metabolism</subject><subject>PHOSPHORUS 32</subject><subject>PHOSPHORUS ISOTOPES</subject><subject>Phosphorus Radioisotopes</subject><subject>PHOSPHORUS-GROUP TRANSFERASES</subject><subject>PHOSPHOTRANSFERASES</subject><subject>POLYSACCHARIDES</subject><subject>Pyruvate Kinase - metabolism</subject><subject>RADIOISOTOPES</subject><subject>SACCHARIDES</subject><subject>SYNTHESIS</subject><subject>TRACER TECHNIQUES</subject><subject>TRANSFERASES</subject><subject>Uridine Diphosphate Glucose - metabolism</subject><subject>VERTEBRATES</subject><subject>Xenopus laevis - embryology</subject><subject>Xenopus laevis - metabolism</subject><subject>Zygote - metabolism</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVGL1TAQhYMo693Vf6AQRETBapK2aeKDsCy6Ciu-KOxbSNJJjaTJ3aRd7L-39V7uoy8zD_Odw8wZhJ5R8o4Syt8TQllFOeGvhXwjCWt41T1AO0pkW7W8uX2IdifkMTov5TchpBaiPkNnrK1F3TU75L_BpE0K3uIMwxz05FPE_Zx9HDDoHBbschpwD_cQ0n6EOH3A12GxaYC4ilyY_2Af8S3EtJ8LTskuE5S3GIZhrTr2GEaTl1SeoEdOhwJPj_0C_fz86cfVl-rm-_XXq8ubyja0nqqWtIJp4pxsOnDgHLeaibZvu4Y5ylxjDDNG19y1vKtNb6y0sqHcMCe5BVZfoBcH31Qmr4r1E9hfNsUIdlJ8TY5wsUKvDtA-p7sZyqRGXyyEoCOkuahOCNFJvrk1B9DmVEoGp_bZjzovihK1vUFtGastYyWk-vcG1a2y50f_2YzQn0TH3Nf5y-NcF6uDyzpaX04YF4IyvmEfDxisgd17yNs9EC30Pm_n9Mn_f4-_tcikqg</recordid><startdate>19890401</startdate><enddate>19890401</enddate><creator>Dworkin, Mark B.</creator><creator>Dworkin-Rastl, Eva</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19890401</creationdate><title>Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos</title><author>Dworkin, Mark B. ; Dworkin-Rastl, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-50582a0ff947efeff6ca285d5742f12f4bb2bba36f5673bdbc9c9416b2f96ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>550501 - Metabolism- Tracer Techniques</topic><topic>ALDEHYDES</topic><topic>AMPHIBIANS</topic><topic>ANIMALS</topic><topic>AQUATIC ORGANISMS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BETA DECAY RADIOISOTOPES</topic><topic>BETA-MINUS DECAY RADIOISOTOPES</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL PATHWAYS</topic><topic>BIOSYNTHESIS</topic><topic>CARBOHYDRATES</topic><topic>CARBON</topic><topic>Carbon - metabolism</topic><topic>Chromatography, Paper</topic><topic>DAYS LIVING RADIOISOTOPES</topic><topic>ELEMENTS</topic><topic>Embryology: invertebrates and vertebrates. Teratology</topic><topic>ENZYMES</topic><topic>FROGS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Development. Fetal membranes</topic><topic>GERM CELLS</topic><topic>GLUCOSE</topic><topic>Glucose-6-Phosphate</topic><topic>Glucosephosphates - metabolism</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - antagonists &amp; inhibitors</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism</topic><topic>GLYCOGEN</topic><topic>Glycogen - metabolism</topic><topic>GLYCOLYSIS</topic><topic>Glycolysis - drug effects</topic><topic>HEXOSES</topic><topic>Iodoacetamide - pharmacology</topic><topic>Iodoacetates - pharmacology</topic><topic>Iodoacetic Acid</topic><topic>ISOTOPE APPLICATIONS</topic><topic>ISOTOPES</topic><topic>Kinetics</topic><topic>LIGHT NUCLEI</topic><topic>METABOLISM</topic><topic>METABOLITES</topic><topic>MONOSACCHARIDES</topic><topic>NONMETALS</topic><topic>NUCLEI</topic><topic>ODD-ODD NUCLEI</topic><topic>ONTOGENESIS</topic><topic>OOCYTES</topic><topic>Oocytes - metabolism</topic><topic>ORGANIC COMPOUNDS</topic><topic>PHOSPHOENOLPYRUVATE</topic><topic>Phosphoenolpyruvate - metabolism</topic><topic>Phosphoglucomutase - metabolism</topic><topic>Phosphoglycerate Mutase - metabolism</topic><topic>PHOSPHORUS 32</topic><topic>PHOSPHORUS ISOTOPES</topic><topic>Phosphorus Radioisotopes</topic><topic>PHOSPHORUS-GROUP TRANSFERASES</topic><topic>PHOSPHOTRANSFERASES</topic><topic>POLYSACCHARIDES</topic><topic>Pyruvate Kinase - metabolism</topic><topic>RADIOISOTOPES</topic><topic>SACCHARIDES</topic><topic>SYNTHESIS</topic><topic>TRACER TECHNIQUES</topic><topic>TRANSFERASES</topic><topic>Uridine Diphosphate Glucose - metabolism</topic><topic>VERTEBRATES</topic><topic>Xenopus laevis - embryology</topic><topic>Xenopus laevis - metabolism</topic><topic>Zygote - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dworkin, Mark B.</creatorcontrib><creatorcontrib>Dworkin-Rastl, Eva</creatorcontrib><creatorcontrib>Ernst Boehringer Institut, Vienna (Austria)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Dev. Biol.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dworkin, Mark B.</au><au>Dworkin-Rastl, Eva</au><aucorp>Ernst Boehringer Institut, Vienna (Austria)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos</atitle><jtitle>Dev. Biol.; (United States)</jtitle><addtitle>Dev Biol</addtitle><date>1989-04-01</date><risdate>1989</risdate><volume>132</volume><issue>2</issue><spage>512</spage><epage>523</epage><pages>512-523</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><coden>DEBIAO</coden><abstract>32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of Xenopus laevis, and the 32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>2538374</pmid><doi>10.1016/0012-1606(89)90246-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Dev. Biol.; (United States), 1989-04, Vol.132 (2), p.512-523
issn 0012-1606
1095-564X
language eng
recordid cdi_proquest_miscellaneous_78887962
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects 550501 - Metabolism- Tracer Techniques
ALDEHYDES
AMPHIBIANS
ANIMALS
AQUATIC ORGANISMS
BASIC BIOLOGICAL SCIENCES
BETA DECAY RADIOISOTOPES
BETA-MINUS DECAY RADIOISOTOPES
Biological and medical sciences
BIOLOGICAL PATHWAYS
BIOSYNTHESIS
CARBOHYDRATES
CARBON
Carbon - metabolism
Chromatography, Paper
DAYS LIVING RADIOISOTOPES
ELEMENTS
Embryology: invertebrates and vertebrates. Teratology
ENZYMES
FROGS
Fundamental and applied biological sciences. Psychology
General aspects. Development. Fetal membranes
GERM CELLS
GLUCOSE
Glucose-6-Phosphate
Glucosephosphates - metabolism
Glyceraldehyde-3-Phosphate Dehydrogenases - antagonists & inhibitors
Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism
GLYCOGEN
Glycogen - metabolism
GLYCOLYSIS
Glycolysis - drug effects
HEXOSES
Iodoacetamide - pharmacology
Iodoacetates - pharmacology
Iodoacetic Acid
ISOTOPE APPLICATIONS
ISOTOPES
Kinetics
LIGHT NUCLEI
METABOLISM
METABOLITES
MONOSACCHARIDES
NONMETALS
NUCLEI
ODD-ODD NUCLEI
ONTOGENESIS
OOCYTES
Oocytes - metabolism
ORGANIC COMPOUNDS
PHOSPHOENOLPYRUVATE
Phosphoenolpyruvate - metabolism
Phosphoglucomutase - metabolism
Phosphoglycerate Mutase - metabolism
PHOSPHORUS 32
PHOSPHORUS ISOTOPES
Phosphorus Radioisotopes
PHOSPHORUS-GROUP TRANSFERASES
PHOSPHOTRANSFERASES
POLYSACCHARIDES
Pyruvate Kinase - metabolism
RADIOISOTOPES
SACCHARIDES
SYNTHESIS
TRACER TECHNIQUES
TRANSFERASES
Uridine Diphosphate Glucose - metabolism
VERTEBRATES
Xenopus laevis - embryology
Xenopus laevis - metabolism
Zygote - metabolism
title Metabolic regulation during early frog development: Glycogenic flux in Xenopus oocytes, eggs, and embryos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20regulation%20during%20early%20frog%20development:%20Glycogenic%20flux%20in%20Xenopus%20oocytes,%20eggs,%20and%20embryos&rft.jtitle=Dev.%20Biol.;%20(United%20States)&rft.au=Dworkin,%20Mark%20B.&rft.aucorp=Ernst%20Boehringer%20Institut,%20Vienna%20(Austria)&rft.date=1989-04-01&rft.volume=132&rft.issue=2&rft.spage=512&rft.epage=523&rft.pages=512-523&rft.issn=0012-1606&rft.eissn=1095-564X&rft.coden=DEBIAO&rft_id=info:doi/10.1016/0012-1606(89)90246-7&rft_dat=%3Cproquest_osti_%3E78887962%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78887962&rft_id=info:pmid/2538374&rft_els_id=0012160689902467&rfr_iscdi=true