Pathways for fatty acid elongation and desaturation in Neurospora crassa

Neurospora crassa incorporated exogenous deuterated palmitate (16:0) and 14C-labeled oleate (18:1 delta 9) into cell lipids. Of the exogenous 18:1 delta 9 incorporated, 59% was desaturated to 18:2 delta 9,12 and 18:3 delta 9,12,15. Of the exogenous 16:0 incorporated, 20% was elongated to 18:0, while...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lipids 1997-01, Vol.32 (1), p.1-5
Hauptverfasser: McKeon, T.A. (USDA, ARS, Western Regional Research Center, Albany, CA.), Goodrich-Tanrikulu, M, Lin, J.T, Stafford, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 1
container_start_page 1
container_title Lipids
container_volume 32
creator McKeon, T.A. (USDA, ARS, Western Regional Research Center, Albany, CA.)
Goodrich-Tanrikulu, M
Lin, J.T
Stafford, A
description Neurospora crassa incorporated exogenous deuterated palmitate (16:0) and 14C-labeled oleate (18:1 delta 9) into cell lipids. Of the exogenous 18:1 delta 9 incorporated, 59% was desaturated to 18:2 delta 9,12 and 18:3 delta 9,12,15. Of the exogenous 16:0 incorporated, 20% was elongated to 18:0, while 37% was elongated and desaturated into 18:1 delta 9, 18:2 delta 9,12, and 18:3 delta 9,12,15. The mass of unsaturated fatty acids in phospholipid and triacylglycerol is 12 times greater than the mass of 18:0. Deuterium label incorporation in unsaturated fatty acids is only twofold greater than in 18:0, indicating a sixfold preferential use of 16:0 for saturated fatty acid synthesis. These results indicate that the release of 16:0 from fatty acid synthase is a key control point that influences fatty acid composition in Neurospora
doi_str_mv 10.1007/s11745-997-0001-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78879182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034590771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4901-fee3f9f6f89ad56448e43ef4f4dfc14696db914e716a3d71989d651fc5c11243</originalsourceid><addsrcrecordid>eNqFkUtr3DAUhUVpSSdJf0AKBUMhZONG13ovQ5oXDG2g6VrcWFLq4LGmkk2Yf18ZD1l00a70uN856OgQcgL0C1CqzjOA4qI2RtWUUqj1G7ICIXRtGFVvyYrShte8ofCeHOb8XI7AjTggB4YqAVquyO09jr9ecJerEFMVcBx3Fbadq3wfhyccuzhUOLjK-YzjlJaLbqi--SnFvI0JqzZhznhM3gXss_-wX4_Iw_XVw-Vtvf5-c3d5sa5bbsoLg_csmCCDNuiE5Fx7znzggbvQApdGukcD3CuQyJwCo42TAkIrWoCGsyNyuthuU_w9-TzaTZdb3_c4-Dhlq7RWBnRTwLN_gsCZaZikTBf081_oc5zSUFIUCqTiIJrZEBaqLcFz8sFuU7fBtLNA7dyGXdqwpQ07t2Fn50975-lx492rYv_9Za6W-UvX-93_De367v7rvC3Kj4syYLT4lLpsf_4wqiSXhv0BNFiccg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1416741522</pqid></control><display><type>article</type><title>Pathways for fatty acid elongation and desaturation in Neurospora crassa</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Wiley-Blackwell Full Collection</source><creator>McKeon, T.A. (USDA, ARS, Western Regional Research Center, Albany, CA.) ; Goodrich-Tanrikulu, M ; Lin, J.T ; Stafford, A</creator><creatorcontrib>McKeon, T.A. (USDA, ARS, Western Regional Research Center, Albany, CA.) ; Goodrich-Tanrikulu, M ; Lin, J.T ; Stafford, A</creatorcontrib><description>Neurospora crassa incorporated exogenous deuterated palmitate (16:0) and 14C-labeled oleate (18:1 delta 9) into cell lipids. Of the exogenous 18:1 delta 9 incorporated, 59% was desaturated to 18:2 delta 9,12 and 18:3 delta 9,12,15. Of the exogenous 16:0 incorporated, 20% was elongated to 18:0, while 37% was elongated and desaturated into 18:1 delta 9, 18:2 delta 9,12, and 18:3 delta 9,12,15. The mass of unsaturated fatty acids in phospholipid and triacylglycerol is 12 times greater than the mass of 18:0. Deuterium label incorporation in unsaturated fatty acids is only twofold greater than in 18:0, indicating a sixfold preferential use of 16:0 for saturated fatty acid synthesis. These results indicate that the release of 16:0 from fatty acid synthase is a key control point that influences fatty acid composition in Neurospora</description><identifier>ISSN: 0024-4201</identifier><identifier>EISSN: 1558-9307</identifier><identifier>DOI: 10.1007/s11745-997-0001-8</identifier><identifier>PMID: 9075186</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>ACIDE GRAS ; ACIDOS GRASOS ; Deuterium ; Deuterium - metabolism ; Fatty acids ; Fatty Acids - biosynthesis ; Fatty Acids - metabolism ; Fatty Acids, Unsaturated - metabolism ; Lipid Metabolism ; Lipids ; Lipids - chemistry ; Mass Spectrometry ; Neurospora ; NEUROSPORA CRASSA ; Neurospora crassa - metabolism ; Oleic Acid - metabolism ; Palmitic Acid - metabolism ; Phospholipids - chemistry ; Phospholipids - metabolism ; Triglycerides - chemistry ; Triglycerides - metabolism</subject><ispartof>Lipids, 1997-01, Vol.32 (1), p.1-5</ispartof><rights>1997 American Oil Chemists' Society (AOCS)</rights><rights>AOCS Press 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4901-fee3f9f6f89ad56448e43ef4f4dfc14696db914e716a3d71989d651fc5c11243</citedby><cites>FETCH-LOGICAL-c4901-fee3f9f6f89ad56448e43ef4f4dfc14696db914e716a3d71989d651fc5c11243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1007%2Fs11745-997-0001-8$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1007%2Fs11745-997-0001-8$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9075186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McKeon, T.A. (USDA, ARS, Western Regional Research Center, Albany, CA.)</creatorcontrib><creatorcontrib>Goodrich-Tanrikulu, M</creatorcontrib><creatorcontrib>Lin, J.T</creatorcontrib><creatorcontrib>Stafford, A</creatorcontrib><title>Pathways for fatty acid elongation and desaturation in Neurospora crassa</title><title>Lipids</title><addtitle>Lipids</addtitle><description>Neurospora crassa incorporated exogenous deuterated palmitate (16:0) and 14C-labeled oleate (18:1 delta 9) into cell lipids. Of the exogenous 18:1 delta 9 incorporated, 59% was desaturated to 18:2 delta 9,12 and 18:3 delta 9,12,15. Of the exogenous 16:0 incorporated, 20% was elongated to 18:0, while 37% was elongated and desaturated into 18:1 delta 9, 18:2 delta 9,12, and 18:3 delta 9,12,15. The mass of unsaturated fatty acids in phospholipid and triacylglycerol is 12 times greater than the mass of 18:0. Deuterium label incorporation in unsaturated fatty acids is only twofold greater than in 18:0, indicating a sixfold preferential use of 16:0 for saturated fatty acid synthesis. These results indicate that the release of 16:0 from fatty acid synthase is a key control point that influences fatty acid composition in Neurospora</description><subject>ACIDE GRAS</subject><subject>ACIDOS GRASOS</subject><subject>Deuterium</subject><subject>Deuterium - metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids - biosynthesis</subject><subject>Fatty Acids - metabolism</subject><subject>Fatty Acids, Unsaturated - metabolism</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Mass Spectrometry</subject><subject>Neurospora</subject><subject>NEUROSPORA CRASSA</subject><subject>Neurospora crassa - metabolism</subject><subject>Oleic Acid - metabolism</subject><subject>Palmitic Acid - metabolism</subject><subject>Phospholipids - chemistry</subject><subject>Phospholipids - metabolism</subject><subject>Triglycerides - chemistry</subject><subject>Triglycerides - metabolism</subject><issn>0024-4201</issn><issn>1558-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUtr3DAUhUVpSSdJf0AKBUMhZONG13ovQ5oXDG2g6VrcWFLq4LGmkk2Yf18ZD1l00a70uN856OgQcgL0C1CqzjOA4qI2RtWUUqj1G7ICIXRtGFVvyYrShte8ofCeHOb8XI7AjTggB4YqAVquyO09jr9ecJerEFMVcBx3Fbadq3wfhyccuzhUOLjK-YzjlJaLbqi--SnFvI0JqzZhznhM3gXss_-wX4_Iw_XVw-Vtvf5-c3d5sa5bbsoLg_csmCCDNuiE5Fx7znzggbvQApdGukcD3CuQyJwCo42TAkIrWoCGsyNyuthuU_w9-TzaTZdb3_c4-Dhlq7RWBnRTwLN_gsCZaZikTBf081_oc5zSUFIUCqTiIJrZEBaqLcFz8sFuU7fBtLNA7dyGXdqwpQ07t2Fn50975-lx492rYv_9Za6W-UvX-93_De367v7rvC3Kj4syYLT4lLpsf_4wqiSXhv0BNFiccg</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>McKeon, T.A. (USDA, ARS, Western Regional Research Center, Albany, CA.)</creator><creator>Goodrich-Tanrikulu, M</creator><creator>Lin, J.T</creator><creator>Stafford, A</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>199701</creationdate><title>Pathways for fatty acid elongation and desaturation in Neurospora crassa</title><author>McKeon, T.A. (USDA, ARS, Western Regional Research Center, Albany, CA.) ; Goodrich-Tanrikulu, M ; Lin, J.T ; Stafford, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4901-fee3f9f6f89ad56448e43ef4f4dfc14696db914e716a3d71989d651fc5c11243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ACIDE GRAS</topic><topic>ACIDOS GRASOS</topic><topic>Deuterium</topic><topic>Deuterium - metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids - biosynthesis</topic><topic>Fatty Acids - metabolism</topic><topic>Fatty Acids, Unsaturated - metabolism</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Mass Spectrometry</topic><topic>Neurospora</topic><topic>NEUROSPORA CRASSA</topic><topic>Neurospora crassa - metabolism</topic><topic>Oleic Acid - metabolism</topic><topic>Palmitic Acid - metabolism</topic><topic>Phospholipids - chemistry</topic><topic>Phospholipids - metabolism</topic><topic>Triglycerides - chemistry</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKeon, T.A. (USDA, ARS, Western Regional Research Center, Albany, CA.)</creatorcontrib><creatorcontrib>Goodrich-Tanrikulu, M</creatorcontrib><creatorcontrib>Lin, J.T</creatorcontrib><creatorcontrib>Stafford, A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Lipids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKeon, T.A. (USDA, ARS, Western Regional Research Center, Albany, CA.)</au><au>Goodrich-Tanrikulu, M</au><au>Lin, J.T</au><au>Stafford, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathways for fatty acid elongation and desaturation in Neurospora crassa</atitle><jtitle>Lipids</jtitle><addtitle>Lipids</addtitle><date>1997-01</date><risdate>1997</risdate><volume>32</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0024-4201</issn><eissn>1558-9307</eissn><abstract>Neurospora crassa incorporated exogenous deuterated palmitate (16:0) and 14C-labeled oleate (18:1 delta 9) into cell lipids. Of the exogenous 18:1 delta 9 incorporated, 59% was desaturated to 18:2 delta 9,12 and 18:3 delta 9,12,15. Of the exogenous 16:0 incorporated, 20% was elongated to 18:0, while 37% was elongated and desaturated into 18:1 delta 9, 18:2 delta 9,12, and 18:3 delta 9,12,15. The mass of unsaturated fatty acids in phospholipid and triacylglycerol is 12 times greater than the mass of 18:0. Deuterium label incorporation in unsaturated fatty acids is only twofold greater than in 18:0, indicating a sixfold preferential use of 16:0 for saturated fatty acid synthesis. These results indicate that the release of 16:0 from fatty acid synthase is a key control point that influences fatty acid composition in Neurospora</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>9075186</pmid><doi>10.1007/s11745-997-0001-8</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-4201
ispartof Lipids, 1997-01, Vol.32 (1), p.1-5
issn 0024-4201
1558-9307
language eng
recordid cdi_proquest_miscellaneous_78879182
source MEDLINE; Springer Nature - Complete Springer Journals; Wiley-Blackwell Full Collection
subjects ACIDE GRAS
ACIDOS GRASOS
Deuterium
Deuterium - metabolism
Fatty acids
Fatty Acids - biosynthesis
Fatty Acids - metabolism
Fatty Acids, Unsaturated - metabolism
Lipid Metabolism
Lipids
Lipids - chemistry
Mass Spectrometry
Neurospora
NEUROSPORA CRASSA
Neurospora crassa - metabolism
Oleic Acid - metabolism
Palmitic Acid - metabolism
Phospholipids - chemistry
Phospholipids - metabolism
Triglycerides - chemistry
Triglycerides - metabolism
title Pathways for fatty acid elongation and desaturation in Neurospora crassa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathways%20for%20fatty%20acid%20elongation%20and%20desaturation%20in%20Neurospora%20crassa&rft.jtitle=Lipids&rft.au=McKeon,%20T.A.%20(USDA,%20ARS,%20Western%20Regional%20Research%20Center,%20Albany,%20CA.)&rft.date=1997-01&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0024-4201&rft.eissn=1558-9307&rft_id=info:doi/10.1007/s11745-997-0001-8&rft_dat=%3Cproquest_cross%3E3034590771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1416741522&rft_id=info:pmid/9075186&rfr_iscdi=true