Cerebral autoregulation dynamics in humans
We studied the response of cerebral blood flow to acute step decreases in arterial blood pressure noninvasively and nonpharmacologically in 10 normal volunteers during normocapnia, hypocapnia, and hypercapnia. The step (approximately 20 mm Hg) was induced by rapidly deflating thigh blood pressure cu...
Gespeichert in:
Veröffentlicht in: | Stroke (1970) 1989, Vol.20 (1), p.45-52 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied the response of cerebral blood flow to acute step decreases in arterial blood pressure noninvasively and nonpharmacologically in 10 normal volunteers during normocapnia, hypocapnia, and hypercapnia. The step (approximately 20 mm Hg) was induced by rapidly deflating thigh blood pressure cuffs following a 2-minute inflation above systolic blood pressure. Instantaneous arterial blood pressure was measured by a new servo-cuff method, and cerebral blood flow changes were assessed by transcranial Doppler recording of middle cerebral artery blood flow velocity. In hypocapnia, full restoration of blood flow to the pretest level was seen as early as 4.1 seconds after the step decrease in blood pressure, while the response was slower in normocapnia and hypercapnia. The time course of cerebrovascular resistance was calculated from blood pressure and blood flow recordings, and rate of regulation was determined as the normalized change in cerebrovascular resistance per second during 2.5 seconds just after the step decrease in blood pressure. The reference for normalization was the calculated change in cerebrovascular resistance that would have nullified the effects of the step decrease in arterial blood pressure on cerebral blood flow. The rate of regulation was 0.38, 0.20, and 0.11/sec in hypocapnia, normocapnia, and hypercapnia, respectively. There was a highly significant inverse relation between rate of regulation and PaCO2 (p less than 0.001), indicating that the response rate of cerebral autoregulation in awake normal humans is profoundly dependent on vascular tone. |
---|---|
ISSN: | 0039-2499 1524-4628 |
DOI: | 10.1161/01.str.20.1.45 |