Physical influences on neural crest cell migration in avian embryos: Contact guidance and spatial restriction
Several ideas on how neural crest (NC) cell migration in bird embryos might be dependent on the physical qualities of the internal embryonic environment were studied. Contact guidance has been suggested to direct NC cells ventrally in the trunk, but this has been subject to doubt (see Newgreen and E...
Gespeichert in:
Veröffentlicht in: | Developmental biology 1989, Vol.131 (1), p.136-148 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several ideas on how neural crest (NC) cell migration in bird embryos might be dependent on the physical qualities of the internal embryonic environment were studied. Contact guidance has been suggested to direct NC cells ventrally in the trunk, but this has been subject to doubt (see
Newgreen and Erickson, 1986,
Int. Rev. Cytol.
103, 118–119). On reexamination,
in situ extracellular matrix (ECM) and cell processes on the medial face of the somites were found appropriately oriented for this function. In addition, tissue culture models of oriented ECM could induce orientation of NC cells which mimicked that observed in the embryo. It is concluded that in this situation, oriented structures contribute to directed migration of NC cells
in vivo, but the mechanism of contact guidance (i.e., steric or adhesive guidance) could not be ascertained. Contact guidance, in the form of steric guidance, has also been suggested as limiting ventrad NC cell movement at the midbrain level due to an insurmountable ridge on the side of the midbrain. The presence of this ridge was confirmed but it is unlikely to be responsible for prevention of ventrad migration, because, although it subsides very rapidly, the cells still refuse to move ventrad, and because models of this ridge
in vitro proved to be no obstacle to NC cells. NC cell migration is also described as being limited by gross space between other organs or tissues.
In vitro, NC cells could penetrate Nucleopore filters with pore diameters of 0.86 μm or greater. Observation of cell-free spaces in embryos showed that these were almost all much larger than the minimum pore size established experimentally. It is therefore concluded that in general the dimensions of gross tissue spaces probably do not set important limits for NC cell migration, but that the dimensions of transiently distensible microspaces between ECM fibrils may be a critical physical parameter. |
---|---|
ISSN: | 0012-1606 1095-564X |
DOI: | 10.1016/S0012-1606(89)80045-4 |