Mechanical and thermal allodynia in chronic central pain following spinal cord injury

Spinal cord injury (SCI) results in variable motor recoveries and chronic central pain syndromes develop in the majority of SCI patients. To provide a basis for further studies, we report a new rodent model of chronic central pain following spinal cord trauma. Male Sprague-Dawley rats ( N = 10) were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pain 1996-11, Vol.68 (1), p.97-107
Hauptverfasser: Christensen, Marc D, Everhart, Alex W, Pickelman, Jason T, Hulsebosch, Claire E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spinal cord injury (SCI) results in variable motor recoveries and chronic central pain syndromes develop in the majority of SCI patients. To provide a basis for further studies, we report a new rodent model of chronic central pain following spinal cord trauma. Male Sprague-Dawley rats ( N = 10) were hemisectioned at T13 and were tested both preoperatively and postoperatively and compared to sham-operated controls ( N = 10) for locomotor function, and mechanical and thermal thresholds of both paw withdrawal and supraspinal responses. Results support the development and persistence of allodynia which persists for 160 days. Locomotor function was tested using the Basso, Beattie and Bresnahan (BBB) open field test and only the limb ipsilateral to the hemisection was affected, demonstrating acute flaccid paralysis with motor recovery which approached normal values by postoperative day (POD) 15. Prior to the hemisection, the rats showed little to no paw withdrawal response to von Frey stimulation of 4.41 mN or 9.41 mN in both forelimbs and hindlimbs. Postoperatively, responses in both ipsilateral and contralateral forelimbs and hindlimbs increased over time and the increase was statistically significant compared to intra-animal presurgical and sham control values ( P < 0.05). There were no significant side-to-side differences in limb responses preoperatively or beyond POD 15. The forelimbs and hindlimbs responded to von Frey hair strengths of 122 mN preoperatively and postoperatively with similar withdrawal frequencies that were not statistically significant. Preoperatively, the paw withdrawal latency to heat stimuli was 22.9 ± 3.0 (mean ± SE) and 20.1 ± 3.1 sec for the hindlimbs and forelimbs, respectively. Postoperatively, the mean hindlimb and forelimb latency of paw withdrawals decreased to 11.9 ± 1.8 and 9.2 ± 2.5 sec, respectively. This decrease in thermal thresholds is statistically significant when compared to intra-animal preoperative and sham control values ( P < 0.05). These data indicate that somatosensory thresholds for non-noxious mechanical and radiant heat which elicit paw withdrawal (flexor reflex) are significantly lowered following SCI. To further support the development and persistence of chronic pain following hemisection, supraspinal responses such as paw lick, head turns, attacking the stimulus, and vocalizations were elicited in response to mechanical and thermal stimuli and were statistically significant compared to presurgical intra-ani
ISSN:0304-3959
1872-6623
DOI:10.1016/S0304-3959(96)03224-1