Optical pumping of a single hole spin in a quantum dot
A quantum dot that can be optically initialized to contain a well-defined and very stable hole spin has been designed, with a relaxation time long enough to allow potential applications in solid-state quantum networks. The spin of an electron is a natural two-level system for realizing a quantum bit...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2008-01, Vol.451 (7177), p.441-444 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 444 |
---|---|
container_issue | 7177 |
container_start_page | 441 |
container_title | Nature (London) |
container_volume | 451 |
creator | Gerardot, Brian D. Brunner, Daniel Dalgarno, Paul A. Öhberg, Patrik Seidl, Stefan Kroner, Martin Karrai, Khaled Stoltz, Nick G. Petroff, Pierre M. Warburton, Richard J. |
description | A quantum dot that can be optically initialized to contain a well-defined and very stable hole spin has been designed, with a relaxation time long enough to allow potential applications in solid-state quantum networks.
The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation
1
,
2
,
3
,
4
,
5
,
6
,
7
. However, this advantage is offset by the hyperfine interaction between the electron spin and the 10
4
to 10
6
spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds
8
,
9
,
10
,
11
,
12
,
13
,
14
. Spin-echo techniques have been used to mitigate the hyperfine interaction
14
,
15
, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this
16
,
17
but is very difficult to realize in practice
12
,
18
,
19
. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes
20
, graphene quantum dots
21
and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic
p
orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak
22
,
23
. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks
24
that can intra-convert the spin state with the polarization of a photon. |
doi_str_mv | 10.1038/nature06472 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_787379252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A193476364</galeid><sourcerecordid>A193476364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c723t-b12f1edba4634a99ee18d5493c6f3312907f8d7a3573bf63f18ef26ac8dd19b3</originalsourceid><addsrcrecordid>eNp90luL1DAUAOAgijuuPvkuZWG9oF1zay6Pw-BlYXFBB3wMaZrULm3aSVLQf290BmZX6pKQhOTLCUkOAM8RvECQiPdepzlYyCjHD8AKUc5KygR_CFYQYlFCQdgJeBLjDYSwQpw-BidIYMQElSvArqfUGd0X0zxMnW-L0RW6iHnU2-LHmJuYp4tcdbGbtU_zUDRjegoeOd1H--zQn4Ltxw_bzefy6vrT5WZ9VRqOSSprhB2yTa0pI1RLaS0STUUlMcwRgrCE3ImGa1JxUjtGHBLWYaaNaBoka3IKXu3DTmHczTYmNXTR2L7X3o5zVFxwwiWucJYv75cQE8wYzfD1vRDxilAJKy4zPfuH3oxz8Pm-CkNaVQJSmFG5R63ureq8G1PQprXeBt2P3rouT6-RJPlfyN_zzxa8mbqduo0uFlAujR06sxj1zZ0N2ST7M7V6jlFdfvt61779v11vv2--LGoTxhiDdWoK3aDDL4Wg-pN_6lb-Zf3i8GRzPdjmaA8Jl8H5AeiY084F7U0Xj05KISoqsnu3dzEv-daG49svnfsbBkfsFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204558040</pqid></control><display><type>article</type><title>Optical pumping of a single hole spin in a quantum dot</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Gerardot, Brian D. ; Brunner, Daniel ; Dalgarno, Paul A. ; Öhberg, Patrik ; Seidl, Stefan ; Kroner, Martin ; Karrai, Khaled ; Stoltz, Nick G. ; Petroff, Pierre M. ; Warburton, Richard J.</creator><creatorcontrib>Gerardot, Brian D. ; Brunner, Daniel ; Dalgarno, Paul A. ; Öhberg, Patrik ; Seidl, Stefan ; Kroner, Martin ; Karrai, Khaled ; Stoltz, Nick G. ; Petroff, Pierre M. ; Warburton, Richard J.</creatorcontrib><description>A quantum dot that can be optically initialized to contain a well-defined and very stable hole spin has been designed, with a relaxation time long enough to allow potential applications in solid-state quantum networks.
The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation
1
,
2
,
3
,
4
,
5
,
6
,
7
. However, this advantage is offset by the hyperfine interaction between the electron spin and the 10
4
to 10
6
spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds
8
,
9
,
10
,
11
,
12
,
13
,
14
. Spin-echo techniques have been used to mitigate the hyperfine interaction
14
,
15
, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this
16
,
17
but is very difficult to realize in practice
12
,
18
,
19
. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes
20
, graphene quantum dots
21
and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic
p
orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak
22
,
23
. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks
24
that can intra-convert the spin state with the polarization of a photon.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature06472</identifier><identifier>PMID: 18216849</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Classical and quantum physics: mechanics and fields ; Electrons ; Exact sciences and technology ; Fluctuations ; Graphene ; Humanities and Social Sciences ; letter ; Magnetic fields ; Materials science ; multidisciplinary ; Nanostructure ; Nanotechnology ; Nuclear spin ; Optical pumping ; Physics ; Polarization ; Properties ; Quantum confinement ; Quantum dots ; Quantum information ; Quantum theory ; Science ; Science (multidisciplinary) ; Semiconductors ; Silicon</subject><ispartof>Nature (London), 2008-01, Vol.451 (7177), p.441-444</ispartof><rights>Springer Nature Limited 2008</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 24, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c723t-b12f1edba4634a99ee18d5493c6f3312907f8d7a3573bf63f18ef26ac8dd19b3</citedby><cites>FETCH-LOGICAL-c723t-b12f1edba4634a99ee18d5493c6f3312907f8d7a3573bf63f18ef26ac8dd19b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature06472$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature06472$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19988548$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18216849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerardot, Brian D.</creatorcontrib><creatorcontrib>Brunner, Daniel</creatorcontrib><creatorcontrib>Dalgarno, Paul A.</creatorcontrib><creatorcontrib>Öhberg, Patrik</creatorcontrib><creatorcontrib>Seidl, Stefan</creatorcontrib><creatorcontrib>Kroner, Martin</creatorcontrib><creatorcontrib>Karrai, Khaled</creatorcontrib><creatorcontrib>Stoltz, Nick G.</creatorcontrib><creatorcontrib>Petroff, Pierre M.</creatorcontrib><creatorcontrib>Warburton, Richard J.</creatorcontrib><title>Optical pumping of a single hole spin in a quantum dot</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A quantum dot that can be optically initialized to contain a well-defined and very stable hole spin has been designed, with a relaxation time long enough to allow potential applications in solid-state quantum networks.
The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation
1
,
2
,
3
,
4
,
5
,
6
,
7
. However, this advantage is offset by the hyperfine interaction between the electron spin and the 10
4
to 10
6
spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds
8
,
9
,
10
,
11
,
12
,
13
,
14
. Spin-echo techniques have been used to mitigate the hyperfine interaction
14
,
15
, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this
16
,
17
but is very difficult to realize in practice
12
,
18
,
19
. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes
20
, graphene quantum dots
21
and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic
p
orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak
22
,
23
. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks
24
that can intra-convert the spin state with the polarization of a photon.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Materials science</subject><subject>multidisciplinary</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nuclear spin</subject><subject>Optical pumping</subject><subject>Physics</subject><subject>Polarization</subject><subject>Properties</subject><subject>Quantum confinement</subject><subject>Quantum dots</subject><subject>Quantum information</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Silicon</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90luL1DAUAOAgijuuPvkuZWG9oF1zay6Pw-BlYXFBB3wMaZrULm3aSVLQf290BmZX6pKQhOTLCUkOAM8RvECQiPdepzlYyCjHD8AKUc5KygR_CFYQYlFCQdgJeBLjDYSwQpw-BidIYMQElSvArqfUGd0X0zxMnW-L0RW6iHnU2-LHmJuYp4tcdbGbtU_zUDRjegoeOd1H--zQn4Ltxw_bzefy6vrT5WZ9VRqOSSprhB2yTa0pI1RLaS0STUUlMcwRgrCE3ImGa1JxUjtGHBLWYaaNaBoka3IKXu3DTmHczTYmNXTR2L7X3o5zVFxwwiWucJYv75cQE8wYzfD1vRDxilAJKy4zPfuH3oxz8Pm-CkNaVQJSmFG5R63ureq8G1PQprXeBt2P3rouT6-RJPlfyN_zzxa8mbqduo0uFlAujR06sxj1zZ0N2ST7M7V6jlFdfvt61779v11vv2--LGoTxhiDdWoK3aDDL4Wg-pN_6lb-Zf3i8GRzPdjmaA8Jl8H5AeiY084F7U0Xj05KISoqsnu3dzEv-daG49svnfsbBkfsFA</recordid><startdate>20080124</startdate><enddate>20080124</enddate><creator>Gerardot, Brian D.</creator><creator>Brunner, Daniel</creator><creator>Dalgarno, Paul A.</creator><creator>Öhberg, Patrik</creator><creator>Seidl, Stefan</creator><creator>Kroner, Martin</creator><creator>Karrai, Khaled</creator><creator>Stoltz, Nick G.</creator><creator>Petroff, Pierre M.</creator><creator>Warburton, Richard J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20080124</creationdate><title>Optical pumping of a single hole spin in a quantum dot</title><author>Gerardot, Brian D. ; Brunner, Daniel ; Dalgarno, Paul A. ; Öhberg, Patrik ; Seidl, Stefan ; Kroner, Martin ; Karrai, Khaled ; Stoltz, Nick G. ; Petroff, Pierre M. ; Warburton, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c723t-b12f1edba4634a99ee18d5493c6f3312907f8d7a3573bf63f18ef26ac8dd19b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Materials science</topic><topic>multidisciplinary</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nuclear spin</topic><topic>Optical pumping</topic><topic>Physics</topic><topic>Polarization</topic><topic>Properties</topic><topic>Quantum confinement</topic><topic>Quantum dots</topic><topic>Quantum information</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerardot, Brian D.</creatorcontrib><creatorcontrib>Brunner, Daniel</creatorcontrib><creatorcontrib>Dalgarno, Paul A.</creatorcontrib><creatorcontrib>Öhberg, Patrik</creatorcontrib><creatorcontrib>Seidl, Stefan</creatorcontrib><creatorcontrib>Kroner, Martin</creatorcontrib><creatorcontrib>Karrai, Khaled</creatorcontrib><creatorcontrib>Stoltz, Nick G.</creatorcontrib><creatorcontrib>Petroff, Pierre M.</creatorcontrib><creatorcontrib>Warburton, Richard J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerardot, Brian D.</au><au>Brunner, Daniel</au><au>Dalgarno, Paul A.</au><au>Öhberg, Patrik</au><au>Seidl, Stefan</au><au>Kroner, Martin</au><au>Karrai, Khaled</au><au>Stoltz, Nick G.</au><au>Petroff, Pierre M.</au><au>Warburton, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical pumping of a single hole spin in a quantum dot</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2008-01-24</date><risdate>2008</risdate><volume>451</volume><issue>7177</issue><spage>441</spage><epage>444</epage><pages>441-444</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>A quantum dot that can be optically initialized to contain a well-defined and very stable hole spin has been designed, with a relaxation time long enough to allow potential applications in solid-state quantum networks.
The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation
1
,
2
,
3
,
4
,
5
,
6
,
7
. However, this advantage is offset by the hyperfine interaction between the electron spin and the 10
4
to 10
6
spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds
8
,
9
,
10
,
11
,
12
,
13
,
14
. Spin-echo techniques have been used to mitigate the hyperfine interaction
14
,
15
, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this
16
,
17
but is very difficult to realize in practice
12
,
18
,
19
. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes
20
, graphene quantum dots
21
and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic
p
orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak
22
,
23
. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks
24
that can intra-convert the spin state with the polarization of a photon.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18216849</pmid><doi>10.1038/nature06472</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2008-01, Vol.451 (7177), p.441-444 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_787379252 |
source | SpringerLink Journals; Nature Journals Online |
subjects | Classical and quantum physics: mechanics and fields Electrons Exact sciences and technology Fluctuations Graphene Humanities and Social Sciences letter Magnetic fields Materials science multidisciplinary Nanostructure Nanotechnology Nuclear spin Optical pumping Physics Polarization Properties Quantum confinement Quantum dots Quantum information Quantum theory Science Science (multidisciplinary) Semiconductors Silicon |
title | Optical pumping of a single hole spin in a quantum dot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20pumping%20of%20a%20single%20hole%20spin%20in%20a%20quantum%20dot&rft.jtitle=Nature%20(London)&rft.au=Gerardot,%20Brian%20D.&rft.date=2008-01-24&rft.volume=451&rft.issue=7177&rft.spage=441&rft.epage=444&rft.pages=441-444&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature06472&rft_dat=%3Cgale_proqu%3EA193476364%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204558040&rft_id=info:pmid/18216849&rft_galeid=A193476364&rfr_iscdi=true |