Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres
Photonic technology, using light instead of electrons as the information carrier, is increasingly replacing electronics in communication and information management systems. Microscopic light manipulation, for this purpose, is achievable through photonic bandgap materials, a special class of photonic...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2000-05, Vol.405 (6785), p.437-440 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 6785 |
container_start_page | 437 |
container_title | Nature (London) |
container_volume | 405 |
creator | John, Sajeev Blanco, Alvaro Chomski, Emmanuel Grabtchak, Serguei Ibisate, Marta Leonard, Stephen W Lopez, Cefe Meseguer, Francisco Miguez, Hernan Mondia, Jessica P Ozin, Geoffrey A Toader, Ovidiu van Driel, Henry M |
description | Photonic technology, using light instead of electrons as the information carrier, is increasingly replacing electronics in communication and information management systems. Microscopic light manipulation, for this purpose, is achievable through photonic bandgap materials, a special class of photonic crystals in which three-dimensional, periodic dielectric constant variations controllably prohibit electromagnetic propagation throughout a specified frequency band. This can result in the localization of photons, thus providing a mechanism for controlling and inhibiting spontaneous light emission that can be exploited for photonic device fabrication. In fact, carefully engineered line defects could act as waveguides connecting photonic devices in all-optical microchips, and infiltration of the photonic material with suitable liquid crystals might produce photonic bandgap structures (and hence light-flow patterns) fully tunable by an externally applied voltage. However, the realization of this technology requires a strategy for the efficient synthesis of high-quality, large-scale photonic crystals with photonic bandgaps at micrometre and sub-micrometre wavelengths, and with rationally designed line and point defects for optical circuitry. Here we describe single crystals of silicon inverse opal with a complete three-dimensional photonic bandgap centred on 1.46 µm, produced by growing silicon inside the voids of an opal template of close-packed silica spheres that are connected by small 'necks' formed during sintering, followed by removal of the silica template. The synthesis method is simple and inexpensive, yielding photonic crystals of pure silicon that are easily integrated with existing silicon-based microelectronics. |
doi_str_mv | 10.1038/35013024 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_787360161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A188111373</galeid><sourcerecordid>A188111373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c664t-85e8521094643ad11af73e4946bb0cb1cdf92f49f769b84156d07f17544e77603</originalsourceid><addsrcrecordid>eNqF0luL1DAUB_Aiijuugp9AiogXpGPSXPs4DF4WBgVd8bGk6WknS5t2kxSdb2_GGXd2ZHelD6HJLyfk5J8kTzGaY0TkO8IQJiin95IZpoJnlEtxP5khlMsMScJPkkfeXyCEGBb0YXKC42TBCJ0lbqVcC5nXqoPUb2xYgzc-HZpUpd50Rg82HddDGKzRqXYbH1SX_jRhHdf10I8dBEjD2gFktenBejPYKCpl61aNqQXlUjxnaW-0G3oIDvzj5EGjOg9P9uNp8v3D-_Plp2z15ePZcrHKNOc0ZJKBZDlGBeWUqBpj1QgCNP5WFdIV1nVT5A0tGsGLSlLMeI1EgwWjFITgiJwmr3Z1RzdcTuBD2RuvoeuUhWHypZCCcIQ5jvLlnTIXjOd5TiJ8fSfEkhUk54gX_6eCEZYj8oc-_4deDJOLbYwnI0qlkIWIKNuhNr5UaWwzBKd0Cxac6gYLjYnTCywlxpgIcih65PVoLsvraH4Dil8N_fbpb6j65mhDNAF-hVZN3pdn374e27e328X5j-XnY73vV8yJ9w6acnSmV25TYlRuQ17-DXmkz_b9mqoe6mtwl-oIXuyB2ga7ccpq4w8uKsHw4TI-rtgW3KHvt59pVZgcXNW6Ar8BZxATMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204487897</pqid></control><display><type>article</type><title>Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>John, Sajeev ; Blanco, Alvaro ; Chomski, Emmanuel ; Grabtchak, Serguei ; Ibisate, Marta ; Leonard, Stephen W ; Lopez, Cefe ; Meseguer, Francisco ; Miguez, Hernan ; Mondia, Jessica P ; Ozin, Geoffrey A ; Toader, Ovidiu ; van Driel, Henry M</creator><creatorcontrib>John, Sajeev ; Blanco, Alvaro ; Chomski, Emmanuel ; Grabtchak, Serguei ; Ibisate, Marta ; Leonard, Stephen W ; Lopez, Cefe ; Meseguer, Francisco ; Miguez, Hernan ; Mondia, Jessica P ; Ozin, Geoffrey A ; Toader, Ovidiu ; van Driel, Henry M</creatorcontrib><description>Photonic technology, using light instead of electrons as the information carrier, is increasingly replacing electronics in communication and information management systems. Microscopic light manipulation, for this purpose, is achievable through photonic bandgap materials, a special class of photonic crystals in which three-dimensional, periodic dielectric constant variations controllably prohibit electromagnetic propagation throughout a specified frequency band. This can result in the localization of photons, thus providing a mechanism for controlling and inhibiting spontaneous light emission that can be exploited for photonic device fabrication. In fact, carefully engineered line defects could act as waveguides connecting photonic devices in all-optical microchips, and infiltration of the photonic material with suitable liquid crystals might produce photonic bandgap structures (and hence light-flow patterns) fully tunable by an externally applied voltage. However, the realization of this technology requires a strategy for the efficient synthesis of high-quality, large-scale photonic crystals with photonic bandgaps at micrometre and sub-micrometre wavelengths, and with rationally designed line and point defects for optical circuitry. Here we describe single crystals of silicon inverse opal with a complete three-dimensional photonic bandgap centred on 1.46 µm, produced by growing silicon inside the voids of an opal template of close-packed silica spheres that are connected by small 'necks' formed during sintering, followed by removal of the silica template. The synthesis method is simple and inexpensive, yielding photonic crystals of pure silicon that are easily integrated with existing silicon-based microelectronics.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/35013024</identifier><identifier>PMID: 10839534</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Crystallography ; Crystals ; Devices ; Dislocations ; Electronics ; Exact sciences and technology ; Fabrication ; Flow pattern ; Fundamental areas of phenomenology (including applications) ; Humanities and Social Sciences ; letter ; Light ; multidisciplinary ; Optical materials ; Optics ; Photonic bandgap materials ; Photonic crystals ; Photonics ; Physics ; Science ; Science (multidisciplinary) ; Silica ; Silicon ; Silicon dioxide ; Synthesis ; Wavelengths</subject><ispartof>Nature (London), 2000-05, Vol.405 (6785), p.437-440</ispartof><rights>Macmillan Magazines Ltd. 2000</rights><rights>2000 INIST-CNRS</rights><rights>COPYRIGHT 2000 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. May 25, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c664t-85e8521094643ad11af73e4946bb0cb1cdf92f49f769b84156d07f17544e77603</citedby><cites>FETCH-LOGICAL-c664t-85e8521094643ad11af73e4946bb0cb1cdf92f49f769b84156d07f17544e77603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1395751$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10839534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>John, Sajeev</creatorcontrib><creatorcontrib>Blanco, Alvaro</creatorcontrib><creatorcontrib>Chomski, Emmanuel</creatorcontrib><creatorcontrib>Grabtchak, Serguei</creatorcontrib><creatorcontrib>Ibisate, Marta</creatorcontrib><creatorcontrib>Leonard, Stephen W</creatorcontrib><creatorcontrib>Lopez, Cefe</creatorcontrib><creatorcontrib>Meseguer, Francisco</creatorcontrib><creatorcontrib>Miguez, Hernan</creatorcontrib><creatorcontrib>Mondia, Jessica P</creatorcontrib><creatorcontrib>Ozin, Geoffrey A</creatorcontrib><creatorcontrib>Toader, Ovidiu</creatorcontrib><creatorcontrib>van Driel, Henry M</creatorcontrib><title>Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Photonic technology, using light instead of electrons as the information carrier, is increasingly replacing electronics in communication and information management systems. Microscopic light manipulation, for this purpose, is achievable through photonic bandgap materials, a special class of photonic crystals in which three-dimensional, periodic dielectric constant variations controllably prohibit electromagnetic propagation throughout a specified frequency band. This can result in the localization of photons, thus providing a mechanism for controlling and inhibiting spontaneous light emission that can be exploited for photonic device fabrication. In fact, carefully engineered line defects could act as waveguides connecting photonic devices in all-optical microchips, and infiltration of the photonic material with suitable liquid crystals might produce photonic bandgap structures (and hence light-flow patterns) fully tunable by an externally applied voltage. However, the realization of this technology requires a strategy for the efficient synthesis of high-quality, large-scale photonic crystals with photonic bandgaps at micrometre and sub-micrometre wavelengths, and with rationally designed line and point defects for optical circuitry. Here we describe single crystals of silicon inverse opal with a complete three-dimensional photonic bandgap centred on 1.46 µm, produced by growing silicon inside the voids of an opal template of close-packed silica spheres that are connected by small 'necks' formed during sintering, followed by removal of the silica template. The synthesis method is simple and inexpensive, yielding photonic crystals of pure silicon that are easily integrated with existing silicon-based microelectronics.</description><subject>Crystallography</subject><subject>Crystals</subject><subject>Devices</subject><subject>Dislocations</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Flow pattern</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Light</subject><subject>multidisciplinary</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Photonic bandgap materials</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silica</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Synthesis</subject><subject>Wavelengths</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0luL1DAUB_Aiijuugp9AiogXpGPSXPs4DF4WBgVd8bGk6WknS5t2kxSdb2_GGXd2ZHelD6HJLyfk5J8kTzGaY0TkO8IQJiin95IZpoJnlEtxP5khlMsMScJPkkfeXyCEGBb0YXKC42TBCJ0lbqVcC5nXqoPUb2xYgzc-HZpUpd50Rg82HddDGKzRqXYbH1SX_jRhHdf10I8dBEjD2gFktenBejPYKCpl61aNqQXlUjxnaW-0G3oIDvzj5EGjOg9P9uNp8v3D-_Plp2z15ePZcrHKNOc0ZJKBZDlGBeWUqBpj1QgCNP5WFdIV1nVT5A0tGsGLSlLMeI1EgwWjFITgiJwmr3Z1RzdcTuBD2RuvoeuUhWHypZCCcIQ5jvLlnTIXjOd5TiJ8fSfEkhUk54gX_6eCEZYj8oc-_4deDJOLbYwnI0qlkIWIKNuhNr5UaWwzBKd0Cxac6gYLjYnTCywlxpgIcih65PVoLsvraH4Dil8N_fbpb6j65mhDNAF-hVZN3pdn374e27e328X5j-XnY73vV8yJ9w6acnSmV25TYlRuQ17-DXmkz_b9mqoe6mtwl-oIXuyB2ga7ccpq4w8uKsHw4TI-rtgW3KHvt59pVZgcXNW6Ar8BZxATMQ</recordid><startdate>20000525</startdate><enddate>20000525</enddate><creator>John, Sajeev</creator><creator>Blanco, Alvaro</creator><creator>Chomski, Emmanuel</creator><creator>Grabtchak, Serguei</creator><creator>Ibisate, Marta</creator><creator>Leonard, Stephen W</creator><creator>Lopez, Cefe</creator><creator>Meseguer, Francisco</creator><creator>Miguez, Hernan</creator><creator>Mondia, Jessica P</creator><creator>Ozin, Geoffrey A</creator><creator>Toader, Ovidiu</creator><creator>van Driel, Henry M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>H8D</scope></search><sort><creationdate>20000525</creationdate><title>Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres</title><author>John, Sajeev ; Blanco, Alvaro ; Chomski, Emmanuel ; Grabtchak, Serguei ; Ibisate, Marta ; Leonard, Stephen W ; Lopez, Cefe ; Meseguer, Francisco ; Miguez, Hernan ; Mondia, Jessica P ; Ozin, Geoffrey A ; Toader, Ovidiu ; van Driel, Henry M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c664t-85e8521094643ad11af73e4946bb0cb1cdf92f49f769b84156d07f17544e77603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Crystallography</topic><topic>Crystals</topic><topic>Devices</topic><topic>Dislocations</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Flow pattern</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Light</topic><topic>multidisciplinary</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Photonic bandgap materials</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silica</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Synthesis</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John, Sajeev</creatorcontrib><creatorcontrib>Blanco, Alvaro</creatorcontrib><creatorcontrib>Chomski, Emmanuel</creatorcontrib><creatorcontrib>Grabtchak, Serguei</creatorcontrib><creatorcontrib>Ibisate, Marta</creatorcontrib><creatorcontrib>Leonard, Stephen W</creatorcontrib><creatorcontrib>Lopez, Cefe</creatorcontrib><creatorcontrib>Meseguer, Francisco</creatorcontrib><creatorcontrib>Miguez, Hernan</creatorcontrib><creatorcontrib>Mondia, Jessica P</creatorcontrib><creatorcontrib>Ozin, Geoffrey A</creatorcontrib><creatorcontrib>Toader, Ovidiu</creatorcontrib><creatorcontrib>van Driel, Henry M</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Aerospace Database</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John, Sajeev</au><au>Blanco, Alvaro</au><au>Chomski, Emmanuel</au><au>Grabtchak, Serguei</au><au>Ibisate, Marta</au><au>Leonard, Stephen W</au><au>Lopez, Cefe</au><au>Meseguer, Francisco</au><au>Miguez, Hernan</au><au>Mondia, Jessica P</au><au>Ozin, Geoffrey A</au><au>Toader, Ovidiu</au><au>van Driel, Henry M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2000-05-25</date><risdate>2000</risdate><volume>405</volume><issue>6785</issue><spage>437</spage><epage>440</epage><pages>437-440</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Photonic technology, using light instead of electrons as the information carrier, is increasingly replacing electronics in communication and information management systems. Microscopic light manipulation, for this purpose, is achievable through photonic bandgap materials, a special class of photonic crystals in which three-dimensional, periodic dielectric constant variations controllably prohibit electromagnetic propagation throughout a specified frequency band. This can result in the localization of photons, thus providing a mechanism for controlling and inhibiting spontaneous light emission that can be exploited for photonic device fabrication. In fact, carefully engineered line defects could act as waveguides connecting photonic devices in all-optical microchips, and infiltration of the photonic material with suitable liquid crystals might produce photonic bandgap structures (and hence light-flow patterns) fully tunable by an externally applied voltage. However, the realization of this technology requires a strategy for the efficient synthesis of high-quality, large-scale photonic crystals with photonic bandgaps at micrometre and sub-micrometre wavelengths, and with rationally designed line and point defects for optical circuitry. Here we describe single crystals of silicon inverse opal with a complete three-dimensional photonic bandgap centred on 1.46 µm, produced by growing silicon inside the voids of an opal template of close-packed silica spheres that are connected by small 'necks' formed during sintering, followed by removal of the silica template. The synthesis method is simple and inexpensive, yielding photonic crystals of pure silicon that are easily integrated with existing silicon-based microelectronics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>10839534</pmid><doi>10.1038/35013024</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2000-05, Vol.405 (6785), p.437-440 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_787360161 |
source | Nature; Alma/SFX Local Collection |
subjects | Crystallography Crystals Devices Dislocations Electronics Exact sciences and technology Fabrication Flow pattern Fundamental areas of phenomenology (including applications) Humanities and Social Sciences letter Light multidisciplinary Optical materials Optics Photonic bandgap materials Photonic crystals Photonics Physics Science Science (multidisciplinary) Silica Silicon Silicon dioxide Synthesis Wavelengths |
title | Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20synthesis%20of%20a%20silicon%20photonic%20crystal%20with%20a%20complete%20three-dimensional%20bandgap%20near%201.5%20micrometres&rft.jtitle=Nature%20(London)&rft.au=John,%20Sajeev&rft.date=2000-05-25&rft.volume=405&rft.issue=6785&rft.spage=437&rft.epage=440&rft.pages=437-440&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/35013024&rft_dat=%3Cgale_proqu%3EA188111373%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204487897&rft_id=info:pmid/10839534&rft_galeid=A188111373&rfr_iscdi=true |