Rotating wave approximation and entropy
This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of...
Gespeichert in:
Veröffentlicht in: | Physics letters. A 2010-08, Vol.374 (36), p.3726-3732 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3732 |
---|---|
container_issue | 36 |
container_start_page | 3726 |
container_title | Physics letters. A |
container_volume | 374 |
creator | Kurcz, Andreas Capolupo, Antonio Beige, Almut Del Giudice, Emilio Vitiello, Giuseppe |
description | This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of the Hamiltonian relates to the entropy operator and generates an irreversible time evolution. The vacuum state of the system is shown to evolve into a generalized coherent state exhibiting entanglement of the modes in which the counter-rotating terms are expressed. Possible consequences at observational level in quantum optics experiments are currently under study. |
doi_str_mv | 10.1016/j.physleta.2010.07.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787277412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960110008571</els_id><sourcerecordid>787277412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1fe583940f173aba255f777a8c174fb07ec5ec7e6019c6e51cd4b54f3486f4ea3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AUxBdRsFa_guTWU-L-S15yU4pWoSCInpft5q2mpNm4u63227ulevb0YJgZ5v0IuWa0YJRVN-ti_NiHHqMuOE0ihYIKfkImrAaRc8mbUzKhAsq8qSg7JxchrClNSdpMyOzFRR274T370jvM9Dh6991tkuSGTA9thkP0btxfkjOr-4BXv3dK3h7uX-eP-fJ58TS_W-ZGSBlzZrGsRSOpZSD0SvOytACga8NA2hUFNCUawDSkMRWWzLRyVUorZF1ZiVpMyezYm3Z8bjFEtemCwb7XA7ptUFADB5CMJ2d1dBrvQvBo1ejTcL9XjKoDGLVWf2DUAYyioBKYFLw9BjH9sevQq2A6HAy2nUcTVeu6_yp-AGXcb50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787277412</pqid></control><display><type>article</type><title>Rotating wave approximation and entropy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kurcz, Andreas ; Capolupo, Antonio ; Beige, Almut ; Del Giudice, Emilio ; Vitiello, Giuseppe</creator><creatorcontrib>Kurcz, Andreas ; Capolupo, Antonio ; Beige, Almut ; Del Giudice, Emilio ; Vitiello, Giuseppe</creatorcontrib><description>This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of the Hamiltonian relates to the entropy operator and generates an irreversible time evolution. The vacuum state of the system is shown to evolve into a generalized coherent state exhibiting entanglement of the modes in which the counter-rotating terms are expressed. Possible consequences at observational level in quantum optics experiments are currently under study.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2010.07.032</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Coherence ; Entropy ; Entropy thermodynamics ; Evolution ; Mathematical analysis ; Operators ; Optical resonators ; Quantized fields ; Quantum optics ; Rotating ; Rotating wave approximation ; Solid state physics</subject><ispartof>Physics letters. A, 2010-08, Vol.374 (36), p.3726-3732</ispartof><rights>2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1fe583940f173aba255f777a8c174fb07ec5ec7e6019c6e51cd4b54f3486f4ea3</citedby><cites>FETCH-LOGICAL-c344t-1fe583940f173aba255f777a8c174fb07ec5ec7e6019c6e51cd4b54f3486f4ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2010.07.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kurcz, Andreas</creatorcontrib><creatorcontrib>Capolupo, Antonio</creatorcontrib><creatorcontrib>Beige, Almut</creatorcontrib><creatorcontrib>Del Giudice, Emilio</creatorcontrib><creatorcontrib>Vitiello, Giuseppe</creatorcontrib><title>Rotating wave approximation and entropy</title><title>Physics letters. A</title><description>This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of the Hamiltonian relates to the entropy operator and generates an irreversible time evolution. The vacuum state of the system is shown to evolve into a generalized coherent state exhibiting entanglement of the modes in which the counter-rotating terms are expressed. Possible consequences at observational level in quantum optics experiments are currently under study.</description><subject>Approximation</subject><subject>Coherence</subject><subject>Entropy</subject><subject>Entropy thermodynamics</subject><subject>Evolution</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Optical resonators</subject><subject>Quantized fields</subject><subject>Quantum optics</subject><subject>Rotating</subject><subject>Rotating wave approximation</subject><subject>Solid state physics</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AUxBdRsFa_guTWU-L-S15yU4pWoSCInpft5q2mpNm4u63227ulevb0YJgZ5v0IuWa0YJRVN-ti_NiHHqMuOE0ihYIKfkImrAaRc8mbUzKhAsq8qSg7JxchrClNSdpMyOzFRR274T370jvM9Dh6991tkuSGTA9thkP0btxfkjOr-4BXv3dK3h7uX-eP-fJ58TS_W-ZGSBlzZrGsRSOpZSD0SvOytACga8NA2hUFNCUawDSkMRWWzLRyVUorZF1ZiVpMyezYm3Z8bjFEtemCwb7XA7ptUFADB5CMJ2d1dBrvQvBo1ejTcL9XjKoDGLVWf2DUAYyioBKYFLw9BjH9sevQq2A6HAy2nUcTVeu6_yp-AGXcb50</recordid><startdate>20100809</startdate><enddate>20100809</enddate><creator>Kurcz, Andreas</creator><creator>Capolupo, Antonio</creator><creator>Beige, Almut</creator><creator>Del Giudice, Emilio</creator><creator>Vitiello, Giuseppe</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100809</creationdate><title>Rotating wave approximation and entropy</title><author>Kurcz, Andreas ; Capolupo, Antonio ; Beige, Almut ; Del Giudice, Emilio ; Vitiello, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1fe583940f173aba255f777a8c174fb07ec5ec7e6019c6e51cd4b54f3486f4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Coherence</topic><topic>Entropy</topic><topic>Entropy thermodynamics</topic><topic>Evolution</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Optical resonators</topic><topic>Quantized fields</topic><topic>Quantum optics</topic><topic>Rotating</topic><topic>Rotating wave approximation</topic><topic>Solid state physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurcz, Andreas</creatorcontrib><creatorcontrib>Capolupo, Antonio</creatorcontrib><creatorcontrib>Beige, Almut</creatorcontrib><creatorcontrib>Del Giudice, Emilio</creatorcontrib><creatorcontrib>Vitiello, Giuseppe</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurcz, Andreas</au><au>Capolupo, Antonio</au><au>Beige, Almut</au><au>Del Giudice, Emilio</au><au>Vitiello, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotating wave approximation and entropy</atitle><jtitle>Physics letters. A</jtitle><date>2010-08-09</date><risdate>2010</risdate><volume>374</volume><issue>36</issue><spage>3726</spage><epage>3732</epage><pages>3726-3732</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of the Hamiltonian relates to the entropy operator and generates an irreversible time evolution. The vacuum state of the system is shown to evolve into a generalized coherent state exhibiting entanglement of the modes in which the counter-rotating terms are expressed. Possible consequences at observational level in quantum optics experiments are currently under study.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2010.07.032</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0375-9601 |
ispartof | Physics letters. A, 2010-08, Vol.374 (36), p.3726-3732 |
issn | 0375-9601 1873-2429 |
language | eng |
recordid | cdi_proquest_miscellaneous_787277412 |
source | Access via ScienceDirect (Elsevier) |
subjects | Approximation Coherence Entropy Entropy thermodynamics Evolution Mathematical analysis Operators Optical resonators Quantized fields Quantum optics Rotating Rotating wave approximation Solid state physics |
title | Rotating wave approximation and entropy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotating%20wave%20approximation%20and%20entropy&rft.jtitle=Physics%20letters.%20A&rft.au=Kurcz,%20Andreas&rft.date=2010-08-09&rft.volume=374&rft.issue=36&rft.spage=3726&rft.epage=3732&rft.pages=3726-3732&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2010.07.032&rft_dat=%3Cproquest_cross%3E787277412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787277412&rft_id=info:pmid/&rft_els_id=S0375960110008571&rfr_iscdi=true |