Rotating wave approximation and entropy

This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2010-08, Vol.374 (36), p.3726-3732
Hauptverfasser: Kurcz, Andreas, Capolupo, Antonio, Beige, Almut, Del Giudice, Emilio, Vitiello, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3732
container_issue 36
container_start_page 3726
container_title Physics letters. A
container_volume 374
creator Kurcz, Andreas
Capolupo, Antonio
Beige, Almut
Del Giudice, Emilio
Vitiello, Giuseppe
description This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of the Hamiltonian relates to the entropy operator and generates an irreversible time evolution. The vacuum state of the system is shown to evolve into a generalized coherent state exhibiting entanglement of the modes in which the counter-rotating terms are expressed. Possible consequences at observational level in quantum optics experiments are currently under study.
doi_str_mv 10.1016/j.physleta.2010.07.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787277412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960110008571</els_id><sourcerecordid>787277412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1fe583940f173aba255f777a8c174fb07ec5ec7e6019c6e51cd4b54f3486f4ea3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AUxBdRsFa_guTWU-L-S15yU4pWoSCInpft5q2mpNm4u63227ulevb0YJgZ5v0IuWa0YJRVN-ti_NiHHqMuOE0ihYIKfkImrAaRc8mbUzKhAsq8qSg7JxchrClNSdpMyOzFRR274T370jvM9Dh6991tkuSGTA9thkP0btxfkjOr-4BXv3dK3h7uX-eP-fJ58TS_W-ZGSBlzZrGsRSOpZSD0SvOytACga8NA2hUFNCUawDSkMRWWzLRyVUorZF1ZiVpMyezYm3Z8bjFEtemCwb7XA7ptUFADB5CMJ2d1dBrvQvBo1ejTcL9XjKoDGLVWf2DUAYyioBKYFLw9BjH9sevQq2A6HAy2nUcTVeu6_yp-AGXcb50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787277412</pqid></control><display><type>article</type><title>Rotating wave approximation and entropy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kurcz, Andreas ; Capolupo, Antonio ; Beige, Almut ; Del Giudice, Emilio ; Vitiello, Giuseppe</creator><creatorcontrib>Kurcz, Andreas ; Capolupo, Antonio ; Beige, Almut ; Del Giudice, Emilio ; Vitiello, Giuseppe</creatorcontrib><description>This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of the Hamiltonian relates to the entropy operator and generates an irreversible time evolution. The vacuum state of the system is shown to evolve into a generalized coherent state exhibiting entanglement of the modes in which the counter-rotating terms are expressed. Possible consequences at observational level in quantum optics experiments are currently under study.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2010.07.032</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Coherence ; Entropy ; Entropy thermodynamics ; Evolution ; Mathematical analysis ; Operators ; Optical resonators ; Quantized fields ; Quantum optics ; Rotating ; Rotating wave approximation ; Solid state physics</subject><ispartof>Physics letters. A, 2010-08, Vol.374 (36), p.3726-3732</ispartof><rights>2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1fe583940f173aba255f777a8c174fb07ec5ec7e6019c6e51cd4b54f3486f4ea3</citedby><cites>FETCH-LOGICAL-c344t-1fe583940f173aba255f777a8c174fb07ec5ec7e6019c6e51cd4b54f3486f4ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2010.07.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kurcz, Andreas</creatorcontrib><creatorcontrib>Capolupo, Antonio</creatorcontrib><creatorcontrib>Beige, Almut</creatorcontrib><creatorcontrib>Del Giudice, Emilio</creatorcontrib><creatorcontrib>Vitiello, Giuseppe</creatorcontrib><title>Rotating wave approximation and entropy</title><title>Physics letters. A</title><description>This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of the Hamiltonian relates to the entropy operator and generates an irreversible time evolution. The vacuum state of the system is shown to evolve into a generalized coherent state exhibiting entanglement of the modes in which the counter-rotating terms are expressed. Possible consequences at observational level in quantum optics experiments are currently under study.</description><subject>Approximation</subject><subject>Coherence</subject><subject>Entropy</subject><subject>Entropy thermodynamics</subject><subject>Evolution</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Optical resonators</subject><subject>Quantized fields</subject><subject>Quantum optics</subject><subject>Rotating</subject><subject>Rotating wave approximation</subject><subject>Solid state physics</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AUxBdRsFa_guTWU-L-S15yU4pWoSCInpft5q2mpNm4u63227ulevb0YJgZ5v0IuWa0YJRVN-ti_NiHHqMuOE0ihYIKfkImrAaRc8mbUzKhAsq8qSg7JxchrClNSdpMyOzFRR274T370jvM9Dh6991tkuSGTA9thkP0btxfkjOr-4BXv3dK3h7uX-eP-fJ58TS_W-ZGSBlzZrGsRSOpZSD0SvOytACga8NA2hUFNCUawDSkMRWWzLRyVUorZF1ZiVpMyezYm3Z8bjFEtemCwb7XA7ptUFADB5CMJ2d1dBrvQvBo1ejTcL9XjKoDGLVWf2DUAYyioBKYFLw9BjH9sevQq2A6HAy2nUcTVeu6_yp-AGXcb50</recordid><startdate>20100809</startdate><enddate>20100809</enddate><creator>Kurcz, Andreas</creator><creator>Capolupo, Antonio</creator><creator>Beige, Almut</creator><creator>Del Giudice, Emilio</creator><creator>Vitiello, Giuseppe</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100809</creationdate><title>Rotating wave approximation and entropy</title><author>Kurcz, Andreas ; Capolupo, Antonio ; Beige, Almut ; Del Giudice, Emilio ; Vitiello, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1fe583940f173aba255f777a8c174fb07ec5ec7e6019c6e51cd4b54f3486f4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Coherence</topic><topic>Entropy</topic><topic>Entropy thermodynamics</topic><topic>Evolution</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Optical resonators</topic><topic>Quantized fields</topic><topic>Quantum optics</topic><topic>Rotating</topic><topic>Rotating wave approximation</topic><topic>Solid state physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurcz, Andreas</creatorcontrib><creatorcontrib>Capolupo, Antonio</creatorcontrib><creatorcontrib>Beige, Almut</creatorcontrib><creatorcontrib>Del Giudice, Emilio</creatorcontrib><creatorcontrib>Vitiello, Giuseppe</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurcz, Andreas</au><au>Capolupo, Antonio</au><au>Beige, Almut</au><au>Del Giudice, Emilio</au><au>Vitiello, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotating wave approximation and entropy</atitle><jtitle>Physics letters. A</jtitle><date>2010-08-09</date><risdate>2010</risdate><volume>374</volume><issue>36</issue><spage>3726</spage><epage>3732</epage><pages>3726-3732</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of the Hamiltonian relates to the entropy operator and generates an irreversible time evolution. The vacuum state of the system is shown to evolve into a generalized coherent state exhibiting entanglement of the modes in which the counter-rotating terms are expressed. Possible consequences at observational level in quantum optics experiments are currently under study.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2010.07.032</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2010-08, Vol.374 (36), p.3726-3732
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_787277412
source Access via ScienceDirect (Elsevier)
subjects Approximation
Coherence
Entropy
Entropy thermodynamics
Evolution
Mathematical analysis
Operators
Optical resonators
Quantized fields
Quantum optics
Rotating
Rotating wave approximation
Solid state physics
title Rotating wave approximation and entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotating%20wave%20approximation%20and%20entropy&rft.jtitle=Physics%20letters.%20A&rft.au=Kurcz,%20Andreas&rft.date=2010-08-09&rft.volume=374&rft.issue=36&rft.spage=3726&rft.epage=3732&rft.pages=3726-3732&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2010.07.032&rft_dat=%3Cproquest_cross%3E787277412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787277412&rft_id=info:pmid/&rft_els_id=S0375960110008571&rfr_iscdi=true