An iterative subspace-based multi-pitch estimation algorithm
In this paper, we present an iterative method for estimation of pitches from signals containing multiple sources using subspace techniques. The resulting estimator is termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different modifications of I-HMUSIC are proposed that improve up...
Gespeichert in:
Veröffentlicht in: | Signal processing 2011, Vol.91 (1), p.150-154 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 1 |
container_start_page | 150 |
container_title | Signal processing |
container_volume | 91 |
creator | Zhang, Johan Xi Christensen, Mads Græsbøll Jensen, Søren Holdt Moonen, Marc |
description | In this paper, we present an iterative method for estimation of pitches from signals containing multiple sources using subspace techniques. The resulting estimator is termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different modifications of I-HMUSIC are proposed that improve upon the classical MUSIC algorithm, including a computationally efficient method for noise subspace updating I-HMUSIC and its modifications are evaluated and compared with both the Cramér–Rao lower bound (CRLB) and non-iterative HMUSIC; good statistical performances have been obtained. |
doi_str_mv | 10.1016/j.sigpro.2010.06.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787258089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168410002574</els_id><sourcerecordid>787258089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-eb544a02debd41f714001b36ee799ae7bba361459d1d541ecf8351f7a1e45c9c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxfdiKvUpM2jBRGGwRcMuNF1SNPbmQx9maQD_nszdHDp6sDlu_fccxC6pSSlhIqHfertdnRDmpE4IiKNcoYWtJAZlpzLc7SIGMdUFOwSXXm_J4TQXJAFelz1iQ3gdLAHSPxU-VEbwJX2UCfd1AaLRxvMLgEfbBepoU90ux2cDbvuGl00uvVwc9Il-np5_ly_4c3H6_t6tcGGURYwVJwxTbIaqprRRlIW3atcAMiy1CCrSueCMl7WtOaMgmmKnEdOU2DclCZfovv5bsz4PcVPVGe9gbbVPQyTVzIG5QUpykiymTRu8N5Bo0YX33Y_ihJ17Ert1dyVOnaliFBR4trdyUB7o9vG6d5Y_7eb5RnLMyEj9zRzENMeLDjljYXeQG0dmKDqwf5v9At5DIGz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787258089</pqid></control><display><type>article</type><title>An iterative subspace-based multi-pitch estimation algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Johan Xi ; Christensen, Mads Græsbøll ; Jensen, Søren Holdt ; Moonen, Marc</creator><creatorcontrib>Zhang, Johan Xi ; Christensen, Mads Græsbøll ; Jensen, Søren Holdt ; Moonen, Marc</creatorcontrib><description>In this paper, we present an iterative method for estimation of pitches from signals containing multiple sources using subspace techniques. The resulting estimator is termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different modifications of I-HMUSIC are proposed that improve upon the classical MUSIC algorithm, including a computationally efficient method for noise subspace updating I-HMUSIC and its modifications are evaluated and compared with both the Cramér–Rao lower bound (CRLB) and non-iterative HMUSIC; good statistical performances have been obtained.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2010.06.010</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Computational efficiency ; Cyclic minimizer ; Detection, estimation, filtering, equalization, prediction ; Estimators ; Exact sciences and technology ; Information, signal and communications theory ; Iterative methods ; Lower bounds ; Multi-pitch estimation ; Noise ; Noise subspace ; Orthogonality ; Signal and communications theory ; Signal classification ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Subspaces ; Telecommunications and information theory</subject><ispartof>Signal processing, 2011, Vol.91 (1), p.150-154</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-eb544a02debd41f714001b36ee799ae7bba361459d1d541ecf8351f7a1e45c9c3</citedby><cites>FETCH-LOGICAL-c414t-eb544a02debd41f714001b36ee799ae7bba361459d1d541ecf8351f7a1e45c9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165168410002574$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23243267$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Johan Xi</creatorcontrib><creatorcontrib>Christensen, Mads Græsbøll</creatorcontrib><creatorcontrib>Jensen, Søren Holdt</creatorcontrib><creatorcontrib>Moonen, Marc</creatorcontrib><title>An iterative subspace-based multi-pitch estimation algorithm</title><title>Signal processing</title><description>In this paper, we present an iterative method for estimation of pitches from signals containing multiple sources using subspace techniques. The resulting estimator is termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different modifications of I-HMUSIC are proposed that improve upon the classical MUSIC algorithm, including a computationally efficient method for noise subspace updating I-HMUSIC and its modifications are evaluated and compared with both the Cramér–Rao lower bound (CRLB) and non-iterative HMUSIC; good statistical performances have been obtained.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Cyclic minimizer</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Iterative methods</subject><subject>Lower bounds</subject><subject>Multi-pitch estimation</subject><subject>Noise</subject><subject>Noise subspace</subject><subject>Orthogonality</subject><subject>Signal and communications theory</subject><subject>Signal classification</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Subspaces</subject><subject>Telecommunications and information theory</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxfdiKvUpM2jBRGGwRcMuNF1SNPbmQx9maQD_nszdHDp6sDlu_fccxC6pSSlhIqHfertdnRDmpE4IiKNcoYWtJAZlpzLc7SIGMdUFOwSXXm_J4TQXJAFelz1iQ3gdLAHSPxU-VEbwJX2UCfd1AaLRxvMLgEfbBepoU90ux2cDbvuGl00uvVwc9Il-np5_ly_4c3H6_t6tcGGURYwVJwxTbIaqprRRlIW3atcAMiy1CCrSueCMl7WtOaMgmmKnEdOU2DclCZfovv5bsz4PcVPVGe9gbbVPQyTVzIG5QUpykiymTRu8N5Bo0YX33Y_ihJ17Ert1dyVOnaliFBR4trdyUB7o9vG6d5Y_7eb5RnLMyEj9zRzENMeLDjljYXeQG0dmKDqwf5v9At5DIGz</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Zhang, Johan Xi</creator><creator>Christensen, Mads Græsbøll</creator><creator>Jensen, Søren Holdt</creator><creator>Moonen, Marc</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>An iterative subspace-based multi-pitch estimation algorithm</title><author>Zhang, Johan Xi ; Christensen, Mads Græsbøll ; Jensen, Søren Holdt ; Moonen, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-eb544a02debd41f714001b36ee799ae7bba361459d1d541ecf8351f7a1e45c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Cyclic minimizer</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Iterative methods</topic><topic>Lower bounds</topic><topic>Multi-pitch estimation</topic><topic>Noise</topic><topic>Noise subspace</topic><topic>Orthogonality</topic><topic>Signal and communications theory</topic><topic>Signal classification</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Subspaces</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Johan Xi</creatorcontrib><creatorcontrib>Christensen, Mads Græsbøll</creatorcontrib><creatorcontrib>Jensen, Søren Holdt</creatorcontrib><creatorcontrib>Moonen, Marc</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Johan Xi</au><au>Christensen, Mads Græsbøll</au><au>Jensen, Søren Holdt</au><au>Moonen, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An iterative subspace-based multi-pitch estimation algorithm</atitle><jtitle>Signal processing</jtitle><date>2011</date><risdate>2011</risdate><volume>91</volume><issue>1</issue><spage>150</spage><epage>154</epage><pages>150-154</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>In this paper, we present an iterative method for estimation of pitches from signals containing multiple sources using subspace techniques. The resulting estimator is termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different modifications of I-HMUSIC are proposed that improve upon the classical MUSIC algorithm, including a computationally efficient method for noise subspace updating I-HMUSIC and its modifications are evaluated and compared with both the Cramér–Rao lower bound (CRLB) and non-iterative HMUSIC; good statistical performances have been obtained.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2010.06.010</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2011, Vol.91 (1), p.150-154 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_proquest_miscellaneous_787258089 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Computational efficiency Cyclic minimizer Detection, estimation, filtering, equalization, prediction Estimators Exact sciences and technology Information, signal and communications theory Iterative methods Lower bounds Multi-pitch estimation Noise Noise subspace Orthogonality Signal and communications theory Signal classification Signal processing Signal representation. Spectral analysis Signal, noise Subspaces Telecommunications and information theory |
title | An iterative subspace-based multi-pitch estimation algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20iterative%20subspace-based%20multi-pitch%20estimation%20algorithm&rft.jtitle=Signal%20processing&rft.au=Zhang,%20Johan%20Xi&rft.date=2011&rft.volume=91&rft.issue=1&rft.spage=150&rft.epage=154&rft.pages=150-154&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2010.06.010&rft_dat=%3Cproquest_cross%3E787258089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787258089&rft_id=info:pmid/&rft_els_id=S0165168410002574&rfr_iscdi=true |