An iterative subspace-based multi-pitch estimation algorithm

In this paper, we present an iterative method for estimation of pitches from signals containing multiple sources using subspace techniques. The resulting estimator is termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different modifications of I-HMUSIC are proposed that improve up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2011, Vol.91 (1), p.150-154
Hauptverfasser: Zhang, Johan Xi, Christensen, Mads Græsbøll, Jensen, Søren Holdt, Moonen, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 150
container_title Signal processing
container_volume 91
creator Zhang, Johan Xi
Christensen, Mads Græsbøll
Jensen, Søren Holdt
Moonen, Marc
description In this paper, we present an iterative method for estimation of pitches from signals containing multiple sources using subspace techniques. The resulting estimator is termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different modifications of I-HMUSIC are proposed that improve upon the classical MUSIC algorithm, including a computationally efficient method for noise subspace updating I-HMUSIC and its modifications are evaluated and compared with both the Cramér–Rao lower bound (CRLB) and non-iterative HMUSIC; good statistical performances have been obtained.
doi_str_mv 10.1016/j.sigpro.2010.06.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787258089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168410002574</els_id><sourcerecordid>787258089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-eb544a02debd41f714001b36ee799ae7bba361459d1d541ecf8351f7a1e45c9c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxfdiKvUpM2jBRGGwRcMuNF1SNPbmQx9maQD_nszdHDp6sDlu_fccxC6pSSlhIqHfertdnRDmpE4IiKNcoYWtJAZlpzLc7SIGMdUFOwSXXm_J4TQXJAFelz1iQ3gdLAHSPxU-VEbwJX2UCfd1AaLRxvMLgEfbBepoU90ux2cDbvuGl00uvVwc9Il-np5_ly_4c3H6_t6tcGGURYwVJwxTbIaqprRRlIW3atcAMiy1CCrSueCMl7WtOaMgmmKnEdOU2DclCZfovv5bsz4PcVPVGe9gbbVPQyTVzIG5QUpykiymTRu8N5Bo0YX33Y_ihJ17Ert1dyVOnaliFBR4trdyUB7o9vG6d5Y_7eb5RnLMyEj9zRzENMeLDjljYXeQG0dmKDqwf5v9At5DIGz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787258089</pqid></control><display><type>article</type><title>An iterative subspace-based multi-pitch estimation algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Johan Xi ; Christensen, Mads Græsbøll ; Jensen, Søren Holdt ; Moonen, Marc</creator><creatorcontrib>Zhang, Johan Xi ; Christensen, Mads Græsbøll ; Jensen, Søren Holdt ; Moonen, Marc</creatorcontrib><description>In this paper, we present an iterative method for estimation of pitches from signals containing multiple sources using subspace techniques. The resulting estimator is termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different modifications of I-HMUSIC are proposed that improve upon the classical MUSIC algorithm, including a computationally efficient method for noise subspace updating I-HMUSIC and its modifications are evaluated and compared with both the Cramér–Rao lower bound (CRLB) and non-iterative HMUSIC; good statistical performances have been obtained.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2010.06.010</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Computational efficiency ; Cyclic minimizer ; Detection, estimation, filtering, equalization, prediction ; Estimators ; Exact sciences and technology ; Information, signal and communications theory ; Iterative methods ; Lower bounds ; Multi-pitch estimation ; Noise ; Noise subspace ; Orthogonality ; Signal and communications theory ; Signal classification ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Subspaces ; Telecommunications and information theory</subject><ispartof>Signal processing, 2011, Vol.91 (1), p.150-154</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-eb544a02debd41f714001b36ee799ae7bba361459d1d541ecf8351f7a1e45c9c3</citedby><cites>FETCH-LOGICAL-c414t-eb544a02debd41f714001b36ee799ae7bba361459d1d541ecf8351f7a1e45c9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165168410002574$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23243267$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Johan Xi</creatorcontrib><creatorcontrib>Christensen, Mads Græsbøll</creatorcontrib><creatorcontrib>Jensen, Søren Holdt</creatorcontrib><creatorcontrib>Moonen, Marc</creatorcontrib><title>An iterative subspace-based multi-pitch estimation algorithm</title><title>Signal processing</title><description>In this paper, we present an iterative method for estimation of pitches from signals containing multiple sources using subspace techniques. The resulting estimator is termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different modifications of I-HMUSIC are proposed that improve upon the classical MUSIC algorithm, including a computationally efficient method for noise subspace updating I-HMUSIC and its modifications are evaluated and compared with both the Cramér–Rao lower bound (CRLB) and non-iterative HMUSIC; good statistical performances have been obtained.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Cyclic minimizer</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Iterative methods</subject><subject>Lower bounds</subject><subject>Multi-pitch estimation</subject><subject>Noise</subject><subject>Noise subspace</subject><subject>Orthogonality</subject><subject>Signal and communications theory</subject><subject>Signal classification</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Subspaces</subject><subject>Telecommunications and information theory</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxfdiKvUpM2jBRGGwRcMuNF1SNPbmQx9maQD_nszdHDp6sDlu_fccxC6pSSlhIqHfertdnRDmpE4IiKNcoYWtJAZlpzLc7SIGMdUFOwSXXm_J4TQXJAFelz1iQ3gdLAHSPxU-VEbwJX2UCfd1AaLRxvMLgEfbBepoU90ux2cDbvuGl00uvVwc9Il-np5_ly_4c3H6_t6tcGGURYwVJwxTbIaqprRRlIW3atcAMiy1CCrSueCMl7WtOaMgmmKnEdOU2DclCZfovv5bsz4PcVPVGe9gbbVPQyTVzIG5QUpykiymTRu8N5Bo0YX33Y_ihJ17Ert1dyVOnaliFBR4trdyUB7o9vG6d5Y_7eb5RnLMyEj9zRzENMeLDjljYXeQG0dmKDqwf5v9At5DIGz</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Zhang, Johan Xi</creator><creator>Christensen, Mads Græsbøll</creator><creator>Jensen, Søren Holdt</creator><creator>Moonen, Marc</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>An iterative subspace-based multi-pitch estimation algorithm</title><author>Zhang, Johan Xi ; Christensen, Mads Græsbøll ; Jensen, Søren Holdt ; Moonen, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-eb544a02debd41f714001b36ee799ae7bba361459d1d541ecf8351f7a1e45c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Cyclic minimizer</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Iterative methods</topic><topic>Lower bounds</topic><topic>Multi-pitch estimation</topic><topic>Noise</topic><topic>Noise subspace</topic><topic>Orthogonality</topic><topic>Signal and communications theory</topic><topic>Signal classification</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Subspaces</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Johan Xi</creatorcontrib><creatorcontrib>Christensen, Mads Græsbøll</creatorcontrib><creatorcontrib>Jensen, Søren Holdt</creatorcontrib><creatorcontrib>Moonen, Marc</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Johan Xi</au><au>Christensen, Mads Græsbøll</au><au>Jensen, Søren Holdt</au><au>Moonen, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An iterative subspace-based multi-pitch estimation algorithm</atitle><jtitle>Signal processing</jtitle><date>2011</date><risdate>2011</risdate><volume>91</volume><issue>1</issue><spage>150</spage><epage>154</epage><pages>150-154</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>In this paper, we present an iterative method for estimation of pitches from signals containing multiple sources using subspace techniques. The resulting estimator is termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different modifications of I-HMUSIC are proposed that improve upon the classical MUSIC algorithm, including a computationally efficient method for noise subspace updating I-HMUSIC and its modifications are evaluated and compared with both the Cramér–Rao lower bound (CRLB) and non-iterative HMUSIC; good statistical performances have been obtained.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2010.06.010</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2011, Vol.91 (1), p.150-154
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_787258089
source Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Computational efficiency
Cyclic minimizer
Detection, estimation, filtering, equalization, prediction
Estimators
Exact sciences and technology
Information, signal and communications theory
Iterative methods
Lower bounds
Multi-pitch estimation
Noise
Noise subspace
Orthogonality
Signal and communications theory
Signal classification
Signal processing
Signal representation. Spectral analysis
Signal, noise
Subspaces
Telecommunications and information theory
title An iterative subspace-based multi-pitch estimation algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20iterative%20subspace-based%20multi-pitch%20estimation%20algorithm&rft.jtitle=Signal%20processing&rft.au=Zhang,%20Johan%20Xi&rft.date=2011&rft.volume=91&rft.issue=1&rft.spage=150&rft.epage=154&rft.pages=150-154&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2010.06.010&rft_dat=%3Cproquest_cross%3E787258089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787258089&rft_id=info:pmid/&rft_els_id=S0165168410002574&rfr_iscdi=true