Solving Sturm–Liouville problems by piecewise perturbation methods, revisited
We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm–Liouville eigenvalue problems. Whereas the original CPM can only be applied to Sturm–Liouville problems after a Liouville transformation, the more general CPM pre...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2010-08, Vol.181 (8), p.1335-1345 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1345 |
---|---|
container_issue | 8 |
container_start_page | 1335 |
container_title | Computer physics communications |
container_volume | 181 |
creator | Ledoux, V. Van Daele, M. |
description | We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm–Liouville eigenvalue problems. Whereas the original CPM can only be applied to Sturm–Liouville problems after a Liouville transformation, the more general CPM presented here solves the Sturm–Liouville problem directly. This enlarges the range of applicability of the CPM to a wider variety of problems and allows a more efficient solution of many problems. The CPMs are closely related to the second-order coefficient approximation method underlying the SLEDGE software package, but provide for higher order approximations. These higher order approximations can also be obtained by applying a modified Neumann method. The CPM approach, however, leads to simpler formulae in a more convenient form. |
doi_str_mv | 10.1016/j.cpc.2010.03.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787241675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465510000974</els_id><sourcerecordid>787241675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4b26b02d9091cf74ab9a09c8f4e2f34f3b0980fd1d1a2a1c75c67b1fdf83e3333</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAHbZsSHBjySOxQpVvKRKXRTWVmyPwVVe2ElRd9yBG3ISXJU1sxnNzP-PZj6ELgnOCCblzSbTg84ojjVmGSb8CM1IxUVKRZ4foxmOkzQvi-IUnYWwwRhzLtgMrdZ9s3XdW7IeJ9_-fH0vXT9tXdNAMvheNdCGRO2SwYGGTxdiF3xUqnp0fZe0ML73JlwnHrYuuBHMOTqxdRPg4i_P0evD_cviKV2uHp8Xd8tUM07HNFe0VJgagQXRlue1EjUWurI5UMtyyxQWFbaGGFLTmmhe6JIrYo2tGLAYc3R12Buv_JggjLJ1QUPT1B30U5C84jQnJS-ikhyU2vcheLBy8K6t_U4SLPfs5EZGdnLPTmImI7vouT14IL6wdeBl0A46DcZ50KM0vfvH_QtXt3mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787241675</pqid></control><display><type>article</type><title>Solving Sturm–Liouville problems by piecewise perturbation methods, revisited</title><source>Elsevier ScienceDirect Journals</source><creator>Ledoux, V. ; Van Daele, M.</creator><creatorcontrib>Ledoux, V. ; Van Daele, M.</creatorcontrib><description>We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm–Liouville eigenvalue problems. Whereas the original CPM can only be applied to Sturm–Liouville problems after a Liouville transformation, the more general CPM presented here solves the Sturm–Liouville problem directly. This enlarges the range of applicability of the CPM to a wider variety of problems and allows a more efficient solution of many problems. The CPMs are closely related to the second-order coefficient approximation method underlying the SLEDGE software package, but provide for higher order approximations. These higher order approximations can also be obtained by applying a modified Neumann method. The CPM approach, however, leads to simpler formulae in a more convenient form.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2010.03.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; C (programming language) ; CPM ; Eigenvalue ; Eigenvalues ; Expansion ; Mathematical analysis ; Perturbation methods ; Schroedinger equation ; Shooting ; Software packages ; Sturm–Liouville ; Transformations</subject><ispartof>Computer physics communications, 2010-08, Vol.181 (8), p.1335-1345</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4b26b02d9091cf74ab9a09c8f4e2f34f3b0980fd1d1a2a1c75c67b1fdf83e3333</citedby><cites>FETCH-LOGICAL-c372t-4b26b02d9091cf74ab9a09c8f4e2f34f3b0980fd1d1a2a1c75c67b1fdf83e3333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2010.03.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ledoux, V.</creatorcontrib><creatorcontrib>Van Daele, M.</creatorcontrib><title>Solving Sturm–Liouville problems by piecewise perturbation methods, revisited</title><title>Computer physics communications</title><description>We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm–Liouville eigenvalue problems. Whereas the original CPM can only be applied to Sturm–Liouville problems after a Liouville transformation, the more general CPM presented here solves the Sturm–Liouville problem directly. This enlarges the range of applicability of the CPM to a wider variety of problems and allows a more efficient solution of many problems. The CPMs are closely related to the second-order coefficient approximation method underlying the SLEDGE software package, but provide for higher order approximations. These higher order approximations can also be obtained by applying a modified Neumann method. The CPM approach, however, leads to simpler formulae in a more convenient form.</description><subject>Approximation</subject><subject>C (programming language)</subject><subject>CPM</subject><subject>Eigenvalue</subject><subject>Eigenvalues</subject><subject>Expansion</subject><subject>Mathematical analysis</subject><subject>Perturbation methods</subject><subject>Schroedinger equation</subject><subject>Shooting</subject><subject>Software packages</subject><subject>Sturm–Liouville</subject><subject>Transformations</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAHbZsSHBjySOxQpVvKRKXRTWVmyPwVVe2ElRd9yBG3ISXJU1sxnNzP-PZj6ELgnOCCblzSbTg84ojjVmGSb8CM1IxUVKRZ4foxmOkzQvi-IUnYWwwRhzLtgMrdZ9s3XdW7IeJ9_-fH0vXT9tXdNAMvheNdCGRO2SwYGGTxdiF3xUqnp0fZe0ML73JlwnHrYuuBHMOTqxdRPg4i_P0evD_cviKV2uHp8Xd8tUM07HNFe0VJgagQXRlue1EjUWurI5UMtyyxQWFbaGGFLTmmhe6JIrYo2tGLAYc3R12Buv_JggjLJ1QUPT1B30U5C84jQnJS-ikhyU2vcheLBy8K6t_U4SLPfs5EZGdnLPTmImI7vouT14IL6wdeBl0A46DcZ50KM0vfvH_QtXt3mA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Ledoux, V.</creator><creator>Van Daele, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100801</creationdate><title>Solving Sturm–Liouville problems by piecewise perturbation methods, revisited</title><author>Ledoux, V. ; Van Daele, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4b26b02d9091cf74ab9a09c8f4e2f34f3b0980fd1d1a2a1c75c67b1fdf83e3333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>C (programming language)</topic><topic>CPM</topic><topic>Eigenvalue</topic><topic>Eigenvalues</topic><topic>Expansion</topic><topic>Mathematical analysis</topic><topic>Perturbation methods</topic><topic>Schroedinger equation</topic><topic>Shooting</topic><topic>Software packages</topic><topic>Sturm–Liouville</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ledoux, V.</creatorcontrib><creatorcontrib>Van Daele, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ledoux, V.</au><au>Van Daele, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Sturm–Liouville problems by piecewise perturbation methods, revisited</atitle><jtitle>Computer physics communications</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>181</volume><issue>8</issue><spage>1335</spage><epage>1345</epage><pages>1335-1345</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm–Liouville eigenvalue problems. Whereas the original CPM can only be applied to Sturm–Liouville problems after a Liouville transformation, the more general CPM presented here solves the Sturm–Liouville problem directly. This enlarges the range of applicability of the CPM to a wider variety of problems and allows a more efficient solution of many problems. The CPMs are closely related to the second-order coefficient approximation method underlying the SLEDGE software package, but provide for higher order approximations. These higher order approximations can also be obtained by applying a modified Neumann method. The CPM approach, however, leads to simpler formulae in a more convenient form.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2010.03.017</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2010-08, Vol.181 (8), p.1335-1345 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_787241675 |
source | Elsevier ScienceDirect Journals |
subjects | Approximation C (programming language) CPM Eigenvalue Eigenvalues Expansion Mathematical analysis Perturbation methods Schroedinger equation Shooting Software packages Sturm–Liouville Transformations |
title | Solving Sturm–Liouville problems by piecewise perturbation methods, revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Sturm%E2%80%93Liouville%20problems%20by%20piecewise%20perturbation%20methods,%20revisited&rft.jtitle=Computer%20physics%20communications&rft.au=Ledoux,%20V.&rft.date=2010-08-01&rft.volume=181&rft.issue=8&rft.spage=1335&rft.epage=1345&rft.pages=1335-1345&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2010.03.017&rft_dat=%3Cproquest_cross%3E787241675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787241675&rft_id=info:pmid/&rft_els_id=S0010465510000974&rfr_iscdi=true |