Solving Sturm–Liouville problems by piecewise perturbation methods, revisited

We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm–Liouville eigenvalue problems. Whereas the original CPM can only be applied to Sturm–Liouville problems after a Liouville transformation, the more general CPM pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2010-08, Vol.181 (8), p.1335-1345
Hauptverfasser: Ledoux, V., Van Daele, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1345
container_issue 8
container_start_page 1335
container_title Computer physics communications
container_volume 181
creator Ledoux, V.
Van Daele, M.
description We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm–Liouville eigenvalue problems. Whereas the original CPM can only be applied to Sturm–Liouville problems after a Liouville transformation, the more general CPM presented here solves the Sturm–Liouville problem directly. This enlarges the range of applicability of the CPM to a wider variety of problems and allows a more efficient solution of many problems. The CPMs are closely related to the second-order coefficient approximation method underlying the SLEDGE software package, but provide for higher order approximations. These higher order approximations can also be obtained by applying a modified Neumann method. The CPM approach, however, leads to simpler formulae in a more convenient form.
doi_str_mv 10.1016/j.cpc.2010.03.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787241675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465510000974</els_id><sourcerecordid>787241675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4b26b02d9091cf74ab9a09c8f4e2f34f3b0980fd1d1a2a1c75c67b1fdf83e3333</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAHbZsSHBjySOxQpVvKRKXRTWVmyPwVVe2ElRd9yBG3ISXJU1sxnNzP-PZj6ELgnOCCblzSbTg84ojjVmGSb8CM1IxUVKRZ4foxmOkzQvi-IUnYWwwRhzLtgMrdZ9s3XdW7IeJ9_-fH0vXT9tXdNAMvheNdCGRO2SwYGGTxdiF3xUqnp0fZe0ML73JlwnHrYuuBHMOTqxdRPg4i_P0evD_cviKV2uHp8Xd8tUM07HNFe0VJgagQXRlue1EjUWurI5UMtyyxQWFbaGGFLTmmhe6JIrYo2tGLAYc3R12Buv_JggjLJ1QUPT1B30U5C84jQnJS-ikhyU2vcheLBy8K6t_U4SLPfs5EZGdnLPTmImI7vouT14IL6wdeBl0A46DcZ50KM0vfvH_QtXt3mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787241675</pqid></control><display><type>article</type><title>Solving Sturm–Liouville problems by piecewise perturbation methods, revisited</title><source>Elsevier ScienceDirect Journals</source><creator>Ledoux, V. ; Van Daele, M.</creator><creatorcontrib>Ledoux, V. ; Van Daele, M.</creatorcontrib><description>We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm–Liouville eigenvalue problems. Whereas the original CPM can only be applied to Sturm–Liouville problems after a Liouville transformation, the more general CPM presented here solves the Sturm–Liouville problem directly. This enlarges the range of applicability of the CPM to a wider variety of problems and allows a more efficient solution of many problems. The CPMs are closely related to the second-order coefficient approximation method underlying the SLEDGE software package, but provide for higher order approximations. These higher order approximations can also be obtained by applying a modified Neumann method. The CPM approach, however, leads to simpler formulae in a more convenient form.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2010.03.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; C (programming language) ; CPM ; Eigenvalue ; Eigenvalues ; Expansion ; Mathematical analysis ; Perturbation methods ; Schroedinger equation ; Shooting ; Software packages ; Sturm–Liouville ; Transformations</subject><ispartof>Computer physics communications, 2010-08, Vol.181 (8), p.1335-1345</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4b26b02d9091cf74ab9a09c8f4e2f34f3b0980fd1d1a2a1c75c67b1fdf83e3333</citedby><cites>FETCH-LOGICAL-c372t-4b26b02d9091cf74ab9a09c8f4e2f34f3b0980fd1d1a2a1c75c67b1fdf83e3333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2010.03.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ledoux, V.</creatorcontrib><creatorcontrib>Van Daele, M.</creatorcontrib><title>Solving Sturm–Liouville problems by piecewise perturbation methods, revisited</title><title>Computer physics communications</title><description>We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm–Liouville eigenvalue problems. Whereas the original CPM can only be applied to Sturm–Liouville problems after a Liouville transformation, the more general CPM presented here solves the Sturm–Liouville problem directly. This enlarges the range of applicability of the CPM to a wider variety of problems and allows a more efficient solution of many problems. The CPMs are closely related to the second-order coefficient approximation method underlying the SLEDGE software package, but provide for higher order approximations. These higher order approximations can also be obtained by applying a modified Neumann method. The CPM approach, however, leads to simpler formulae in a more convenient form.</description><subject>Approximation</subject><subject>C (programming language)</subject><subject>CPM</subject><subject>Eigenvalue</subject><subject>Eigenvalues</subject><subject>Expansion</subject><subject>Mathematical analysis</subject><subject>Perturbation methods</subject><subject>Schroedinger equation</subject><subject>Shooting</subject><subject>Software packages</subject><subject>Sturm–Liouville</subject><subject>Transformations</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAHbZsSHBjySOxQpVvKRKXRTWVmyPwVVe2ElRd9yBG3ISXJU1sxnNzP-PZj6ELgnOCCblzSbTg84ojjVmGSb8CM1IxUVKRZ4foxmOkzQvi-IUnYWwwRhzLtgMrdZ9s3XdW7IeJ9_-fH0vXT9tXdNAMvheNdCGRO2SwYGGTxdiF3xUqnp0fZe0ML73JlwnHrYuuBHMOTqxdRPg4i_P0evD_cviKV2uHp8Xd8tUM07HNFe0VJgagQXRlue1EjUWurI5UMtyyxQWFbaGGFLTmmhe6JIrYo2tGLAYc3R12Buv_JggjLJ1QUPT1B30U5C84jQnJS-ikhyU2vcheLBy8K6t_U4SLPfs5EZGdnLPTmImI7vouT14IL6wdeBl0A46DcZ50KM0vfvH_QtXt3mA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Ledoux, V.</creator><creator>Van Daele, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100801</creationdate><title>Solving Sturm–Liouville problems by piecewise perturbation methods, revisited</title><author>Ledoux, V. ; Van Daele, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4b26b02d9091cf74ab9a09c8f4e2f34f3b0980fd1d1a2a1c75c67b1fdf83e3333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>C (programming language)</topic><topic>CPM</topic><topic>Eigenvalue</topic><topic>Eigenvalues</topic><topic>Expansion</topic><topic>Mathematical analysis</topic><topic>Perturbation methods</topic><topic>Schroedinger equation</topic><topic>Shooting</topic><topic>Software packages</topic><topic>Sturm–Liouville</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ledoux, V.</creatorcontrib><creatorcontrib>Van Daele, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ledoux, V.</au><au>Van Daele, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Sturm–Liouville problems by piecewise perturbation methods, revisited</atitle><jtitle>Computer physics communications</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>181</volume><issue>8</issue><spage>1335</spage><epage>1345</epage><pages>1335-1345</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm–Liouville eigenvalue problems. Whereas the original CPM can only be applied to Sturm–Liouville problems after a Liouville transformation, the more general CPM presented here solves the Sturm–Liouville problem directly. This enlarges the range of applicability of the CPM to a wider variety of problems and allows a more efficient solution of many problems. The CPMs are closely related to the second-order coefficient approximation method underlying the SLEDGE software package, but provide for higher order approximations. These higher order approximations can also be obtained by applying a modified Neumann method. The CPM approach, however, leads to simpler formulae in a more convenient form.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2010.03.017</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2010-08, Vol.181 (8), p.1335-1345
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_787241675
source Elsevier ScienceDirect Journals
subjects Approximation
C (programming language)
CPM
Eigenvalue
Eigenvalues
Expansion
Mathematical analysis
Perturbation methods
Schroedinger equation
Shooting
Software packages
Sturm–Liouville
Transformations
title Solving Sturm–Liouville problems by piecewise perturbation methods, revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Sturm%E2%80%93Liouville%20problems%20by%20piecewise%20perturbation%20methods,%20revisited&rft.jtitle=Computer%20physics%20communications&rft.au=Ledoux,%20V.&rft.date=2010-08-01&rft.volume=181&rft.issue=8&rft.spage=1335&rft.epage=1345&rft.pages=1335-1345&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2010.03.017&rft_dat=%3Cproquest_cross%3E787241675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787241675&rft_id=info:pmid/&rft_els_id=S0010465510000974&rfr_iscdi=true