XCS for Personalizing Desktop Interfaces

We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user's environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCSs ability to predict user-preferred actions for a cale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2010-08, Vol.14 (4), p.547-560
Hauptverfasser: Shankar, Anil, Louis, Sushil J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 4
container_start_page 547
container_title IEEE transactions on evolutionary computation
container_volume 14
creator Shankar, Anil
Louis, Sushil J
description We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user's environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCSs ability to predict user-preferred actions for a calendar and a media player. Results from three real-world user studies indicate that XCS significantly outperforms a decision-tree learner to successfully predict user preferences for these two desktop interfaces. Our results also show that removing external user-related contextual information degrades XCSs performance. This performance degradation emphasizes the need for desktop applications to access external contextual information to better learn user preferences. Our results highlight the potential for a learning classifier systems based approach for personalizing desktop applications to improve the quality of human-computer interaction.
doi_str_mv 10.1109/TEVC.2009.2021466
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_787229238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5427110</ieee_id><sourcerecordid>2720467201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-27c13ae87415764ae21600fa26121350b481c7645923cca9f06e4627a59c0c7a3</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsfQLwsiOhl60w2fzZHWasWCgpW6S3EkJWt201Ntgf99Ka09OBlZmB-78F7hJwjjBBB3c7G79WIAqg0KDIhDsgAFcMcgIrDdEOpcinL-TE5iXEBgIyjGpCbefWa1T5kLy5E35m2-W26z-zexa_er7JJ17tQG-viKTmqTRvd2W4PydvDeFY95dPnx0l1N81twXmfU2mxMK6UDLkUzDiKAqA2VCDFgsMHK9GmB1e0sNaoGoRjgkrDlQUrTTEk11vfVfDfaxd7vWyidW1rOufXUctSUprEZSIv_5ELvw4pQtQIVKawClSicEvZ4GMMrtar0CxN-EmQ3lSnN9XpTXV6V13SXO2cTbSmrYPpbBP3QlpAyZjgibvYco1zbv_mjMpkXPwBYHNzjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027778909</pqid></control><display><type>article</type><title>XCS for Personalizing Desktop Interfaces</title><source>IEEE Electronic Library (IEL)</source><creator>Shankar, Anil ; Louis, Sushil J</creator><creatorcontrib>Shankar, Anil ; Louis, Sushil J</creatorcontrib><description>We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user's environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCSs ability to predict user-preferred actions for a calendar and a media player. Results from three real-world user studies indicate that XCS significantly outperforms a decision-tree learner to successfully predict user preferences for these two desktop interfaces. Our results also show that removing external user-related contextual information degrades XCSs performance. This performance degradation emphasizes the need for desktop applications to access external contextual information to better learn user preferences. Our results highlight the potential for a learning classifier systems based approach for personalizing desktop applications to improve the quality of human-computer interaction.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2009.2021466</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Application software ; Applied sciences ; Artificial intelligence ; Calendars ; Classifiers ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data mining ; Decision-trees ; Degradation ; Evolutionary algorithms ; Evolutionary computation ; Exact sciences and technology ; Field programmable gate arrays ; Genetic algorithms ; genetics-based machine learning ; Harnesses ; Learning ; Learning and adaptive systems ; learning classifier systems ; Lifting equipment ; Machine learning ; Performance degradation ; Personalizing ; Players ; Signal mapping ; Software ; user context ; XCS</subject><ispartof>IEEE transactions on evolutionary computation, 2010-08, Vol.14 (4), p.547-560</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-27c13ae87415764ae21600fa26121350b481c7645923cca9f06e4627a59c0c7a3</citedby><cites>FETCH-LOGICAL-c355t-27c13ae87415764ae21600fa26121350b481c7645923cca9f06e4627a59c0c7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5427110$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5427110$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23084465$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shankar, Anil</creatorcontrib><creatorcontrib>Louis, Sushil J</creatorcontrib><title>XCS for Personalizing Desktop Interfaces</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user's environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCSs ability to predict user-preferred actions for a calendar and a media player. Results from three real-world user studies indicate that XCS significantly outperforms a decision-tree learner to successfully predict user preferences for these two desktop interfaces. Our results also show that removing external user-related contextual information degrades XCSs performance. This performance degradation emphasizes the need for desktop applications to access external contextual information to better learn user preferences. Our results highlight the potential for a learning classifier systems based approach for personalizing desktop applications to improve the quality of human-computer interaction.</description><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Calendars</subject><subject>Classifiers</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data mining</subject><subject>Decision-trees</subject><subject>Degradation</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Field programmable gate arrays</subject><subject>Genetic algorithms</subject><subject>genetics-based machine learning</subject><subject>Harnesses</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>learning classifier systems</subject><subject>Lifting equipment</subject><subject>Machine learning</subject><subject>Performance degradation</subject><subject>Personalizing</subject><subject>Players</subject><subject>Signal mapping</subject><subject>Software</subject><subject>user context</subject><subject>XCS</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LAzEQxYMoWKsfQLwsiOhl60w2fzZHWasWCgpW6S3EkJWt201Ntgf99Ka09OBlZmB-78F7hJwjjBBB3c7G79WIAqg0KDIhDsgAFcMcgIrDdEOpcinL-TE5iXEBgIyjGpCbefWa1T5kLy5E35m2-W26z-zexa_er7JJ17tQG-viKTmqTRvd2W4PydvDeFY95dPnx0l1N81twXmfU2mxMK6UDLkUzDiKAqA2VCDFgsMHK9GmB1e0sNaoGoRjgkrDlQUrTTEk11vfVfDfaxd7vWyidW1rOufXUctSUprEZSIv_5ELvw4pQtQIVKawClSicEvZ4GMMrtar0CxN-EmQ3lSnN9XpTXV6V13SXO2cTbSmrYPpbBP3QlpAyZjgibvYco1zbv_mjMpkXPwBYHNzjQ</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Shankar, Anil</creator><creator>Louis, Sushil J</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100801</creationdate><title>XCS for Personalizing Desktop Interfaces</title><author>Shankar, Anil ; Louis, Sushil J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-27c13ae87415764ae21600fa26121350b481c7645923cca9f06e4627a59c0c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Calendars</topic><topic>Classifiers</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data mining</topic><topic>Decision-trees</topic><topic>Degradation</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Field programmable gate arrays</topic><topic>Genetic algorithms</topic><topic>genetics-based machine learning</topic><topic>Harnesses</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>learning classifier systems</topic><topic>Lifting equipment</topic><topic>Machine learning</topic><topic>Performance degradation</topic><topic>Personalizing</topic><topic>Players</topic><topic>Signal mapping</topic><topic>Software</topic><topic>user context</topic><topic>XCS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, Anil</creatorcontrib><creatorcontrib>Louis, Sushil J</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shankar, Anil</au><au>Louis, Sushil J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XCS for Personalizing Desktop Interfaces</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>14</volume><issue>4</issue><spage>547</spage><epage>560</epage><pages>547-560</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user's environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCSs ability to predict user-preferred actions for a calendar and a media player. Results from three real-world user studies indicate that XCS significantly outperforms a decision-tree learner to successfully predict user preferences for these two desktop interfaces. Our results also show that removing external user-related contextual information degrades XCSs performance. This performance degradation emphasizes the need for desktop applications to access external contextual information to better learn user preferences. Our results highlight the potential for a learning classifier systems based approach for personalizing desktop applications to improve the quality of human-computer interaction.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2009.2021466</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2010-08, Vol.14 (4), p.547-560
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_miscellaneous_787229238
source IEEE Electronic Library (IEL)
subjects Application software
Applied sciences
Artificial intelligence
Calendars
Classifiers
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Data mining
Decision-trees
Degradation
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Field programmable gate arrays
Genetic algorithms
genetics-based machine learning
Harnesses
Learning
Learning and adaptive systems
learning classifier systems
Lifting equipment
Machine learning
Performance degradation
Personalizing
Players
Signal mapping
Software
user context
XCS
title XCS for Personalizing Desktop Interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XCS%20for%20Personalizing%20Desktop%20Interfaces&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Shankar,%20Anil&rft.date=2010-08-01&rft.volume=14&rft.issue=4&rft.spage=547&rft.epage=560&rft.pages=547-560&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2009.2021466&rft_dat=%3Cproquest_RIE%3E2720467201%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027778909&rft_id=info:pmid/&rft_ieee_id=5427110&rfr_iscdi=true