XCS for Personalizing Desktop Interfaces
We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user's environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCSs ability to predict user-preferred actions for a cale...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2010-08, Vol.14 (4), p.547-560 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560 |
---|---|
container_issue | 4 |
container_start_page | 547 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 14 |
creator | Shankar, Anil Louis, Sushil J |
description | We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user's environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCSs ability to predict user-preferred actions for a calendar and a media player. Results from three real-world user studies indicate that XCS significantly outperforms a decision-tree learner to successfully predict user preferences for these two desktop interfaces. Our results also show that removing external user-related contextual information degrades XCSs performance. This performance degradation emphasizes the need for desktop applications to access external contextual information to better learn user preferences. Our results highlight the potential for a learning classifier systems based approach for personalizing desktop applications to improve the quality of human-computer interaction. |
doi_str_mv | 10.1109/TEVC.2009.2021466 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_787229238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5427110</ieee_id><sourcerecordid>2720467201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-27c13ae87415764ae21600fa26121350b481c7645923cca9f06e4627a59c0c7a3</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsfQLwsiOhl60w2fzZHWasWCgpW6S3EkJWt201Ntgf99Ka09OBlZmB-78F7hJwjjBBB3c7G79WIAqg0KDIhDsgAFcMcgIrDdEOpcinL-TE5iXEBgIyjGpCbefWa1T5kLy5E35m2-W26z-zexa_er7JJ17tQG-viKTmqTRvd2W4PydvDeFY95dPnx0l1N81twXmfU2mxMK6UDLkUzDiKAqA2VCDFgsMHK9GmB1e0sNaoGoRjgkrDlQUrTTEk11vfVfDfaxd7vWyidW1rOufXUctSUprEZSIv_5ELvw4pQtQIVKawClSicEvZ4GMMrtar0CxN-EmQ3lSnN9XpTXV6V13SXO2cTbSmrYPpbBP3QlpAyZjgibvYco1zbv_mjMpkXPwBYHNzjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027778909</pqid></control><display><type>article</type><title>XCS for Personalizing Desktop Interfaces</title><source>IEEE Electronic Library (IEL)</source><creator>Shankar, Anil ; Louis, Sushil J</creator><creatorcontrib>Shankar, Anil ; Louis, Sushil J</creatorcontrib><description>We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user's environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCSs ability to predict user-preferred actions for a calendar and a media player. Results from three real-world user studies indicate that XCS significantly outperforms a decision-tree learner to successfully predict user preferences for these two desktop interfaces. Our results also show that removing external user-related contextual information degrades XCSs performance. This performance degradation emphasizes the need for desktop applications to access external contextual information to better learn user preferences. Our results highlight the potential for a learning classifier systems based approach for personalizing desktop applications to improve the quality of human-computer interaction.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2009.2021466</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Application software ; Applied sciences ; Artificial intelligence ; Calendars ; Classifiers ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data mining ; Decision-trees ; Degradation ; Evolutionary algorithms ; Evolutionary computation ; Exact sciences and technology ; Field programmable gate arrays ; Genetic algorithms ; genetics-based machine learning ; Harnesses ; Learning ; Learning and adaptive systems ; learning classifier systems ; Lifting equipment ; Machine learning ; Performance degradation ; Personalizing ; Players ; Signal mapping ; Software ; user context ; XCS</subject><ispartof>IEEE transactions on evolutionary computation, 2010-08, Vol.14 (4), p.547-560</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-27c13ae87415764ae21600fa26121350b481c7645923cca9f06e4627a59c0c7a3</citedby><cites>FETCH-LOGICAL-c355t-27c13ae87415764ae21600fa26121350b481c7645923cca9f06e4627a59c0c7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5427110$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5427110$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23084465$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shankar, Anil</creatorcontrib><creatorcontrib>Louis, Sushil J</creatorcontrib><title>XCS for Personalizing Desktop Interfaces</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user's environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCSs ability to predict user-preferred actions for a calendar and a media player. Results from three real-world user studies indicate that XCS significantly outperforms a decision-tree learner to successfully predict user preferences for these two desktop interfaces. Our results also show that removing external user-related contextual information degrades XCSs performance. This performance degradation emphasizes the need for desktop applications to access external contextual information to better learn user preferences. Our results highlight the potential for a learning classifier systems based approach for personalizing desktop applications to improve the quality of human-computer interaction.</description><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Calendars</subject><subject>Classifiers</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data mining</subject><subject>Decision-trees</subject><subject>Degradation</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Field programmable gate arrays</subject><subject>Genetic algorithms</subject><subject>genetics-based machine learning</subject><subject>Harnesses</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>learning classifier systems</subject><subject>Lifting equipment</subject><subject>Machine learning</subject><subject>Performance degradation</subject><subject>Personalizing</subject><subject>Players</subject><subject>Signal mapping</subject><subject>Software</subject><subject>user context</subject><subject>XCS</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LAzEQxYMoWKsfQLwsiOhl60w2fzZHWasWCgpW6S3EkJWt201Ntgf99Ka09OBlZmB-78F7hJwjjBBB3c7G79WIAqg0KDIhDsgAFcMcgIrDdEOpcinL-TE5iXEBgIyjGpCbefWa1T5kLy5E35m2-W26z-zexa_er7JJ17tQG-viKTmqTRvd2W4PydvDeFY95dPnx0l1N81twXmfU2mxMK6UDLkUzDiKAqA2VCDFgsMHK9GmB1e0sNaoGoRjgkrDlQUrTTEk11vfVfDfaxd7vWyidW1rOufXUctSUprEZSIv_5ELvw4pQtQIVKawClSicEvZ4GMMrtar0CxN-EmQ3lSnN9XpTXV6V13SXO2cTbSmrYPpbBP3QlpAyZjgibvYco1zbv_mjMpkXPwBYHNzjQ</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Shankar, Anil</creator><creator>Louis, Sushil J</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100801</creationdate><title>XCS for Personalizing Desktop Interfaces</title><author>Shankar, Anil ; Louis, Sushil J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-27c13ae87415764ae21600fa26121350b481c7645923cca9f06e4627a59c0c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Calendars</topic><topic>Classifiers</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data mining</topic><topic>Decision-trees</topic><topic>Degradation</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Field programmable gate arrays</topic><topic>Genetic algorithms</topic><topic>genetics-based machine learning</topic><topic>Harnesses</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>learning classifier systems</topic><topic>Lifting equipment</topic><topic>Machine learning</topic><topic>Performance degradation</topic><topic>Personalizing</topic><topic>Players</topic><topic>Signal mapping</topic><topic>Software</topic><topic>user context</topic><topic>XCS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, Anil</creatorcontrib><creatorcontrib>Louis, Sushil J</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shankar, Anil</au><au>Louis, Sushil J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XCS for Personalizing Desktop Interfaces</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>14</volume><issue>4</issue><spage>547</spage><epage>560</epage><pages>547-560</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user's environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCSs ability to predict user-preferred actions for a calendar and a media player. Results from three real-world user studies indicate that XCS significantly outperforms a decision-tree learner to successfully predict user preferences for these two desktop interfaces. Our results also show that removing external user-related contextual information degrades XCSs performance. This performance degradation emphasizes the need for desktop applications to access external contextual information to better learn user preferences. Our results highlight the potential for a learning classifier systems based approach for personalizing desktop applications to improve the quality of human-computer interaction.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2009.2021466</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2010-08, Vol.14 (4), p.547-560 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_miscellaneous_787229238 |
source | IEEE Electronic Library (IEL) |
subjects | Application software Applied sciences Artificial intelligence Calendars Classifiers Computer science control theory systems Computer systems and distributed systems. User interface Data mining Decision-trees Degradation Evolutionary algorithms Evolutionary computation Exact sciences and technology Field programmable gate arrays Genetic algorithms genetics-based machine learning Harnesses Learning Learning and adaptive systems learning classifier systems Lifting equipment Machine learning Performance degradation Personalizing Players Signal mapping Software user context XCS |
title | XCS for Personalizing Desktop Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XCS%20for%20Personalizing%20Desktop%20Interfaces&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Shankar,%20Anil&rft.date=2010-08-01&rft.volume=14&rft.issue=4&rft.spage=547&rft.epage=560&rft.pages=547-560&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2009.2021466&rft_dat=%3Cproquest_RIE%3E2720467201%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027778909&rft_id=info:pmid/&rft_ieee_id=5427110&rfr_iscdi=true |