Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions
Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein...
Gespeichert in:
Veröffentlicht in: | Biometals 2002-06, Vol.15 (2), p.121-131 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 2 |
container_start_page | 121 |
container_title | Biometals |
container_volume | 15 |
creator | Clarke, Teresa E Rohrbach, Martin R Tari, Leslie W Vogel, Hans J Köster, Wolfgang |
description | Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long alpha-helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins. |
doi_str_mv | 10.1023/A:1015249530156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_787208528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71781739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c9c278c0af73ff97cdfa739e8e5f5ca0715144e9e51a457a74ef9a47c3c2f2383</originalsourceid><addsrcrecordid>eNp90c1LJTEMAPAiK_r8OHtbigc9jfZz0noT9e0Kghc9D7WT-ipvOtrOiP73VnRZ2MOeQsKPhCSEHHB2wpmQp-dnnHEtlNWyxnaDLLgG0RgA-YMsmG3bhhmltslOKU-MMQus3SLbXDDVWsEWZFhiztHT1Xufxzc3uAnpQ0x9TI_0OY8TxkSXq_mShjwO9Kr4FVa-io76cR3P6DBPLk2FVubHVDC_Yk9d6mkaU_O3kvEx1mSPbAa3Lrj_HXfJ_fLq7uJ3c3P76_ri_KbxUpup8dYLMJ65ADIEC74PDqRFgzpo7xhwzZVCi5o7pcGBwmCdAi-9CEIauUuOv_rWFV5mLFM3xOJxvXYJx7l0YEAwo8WnPPq_5GB4nV3h4T_waZxzqlt0oOoTFDBW0c9vND8M2HfPOQ4uv3d_7i0_ACyzgpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>741014700</pqid></control><display><type>article</type><title>Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Clarke, Teresa E ; Rohrbach, Martin R ; Tari, Leslie W ; Vogel, Hans J ; Köster, Wolfgang</creator><creatorcontrib>Clarke, Teresa E ; Rohrbach, Martin R ; Tari, Leslie W ; Vogel, Hans J ; Köster, Wolfgang</creatorcontrib><description>Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long alpha-helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1023/A:1015249530156</identifier><identifier>PMID: 12046920</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Amino Acid Sequence ; Amino acids ; ATP ; Bacteria ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Conserved Sequence - genetics ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Evolution, Molecular ; Ferric Compounds - metabolism ; Gram-positive bacteria ; Hydroxamic Acids - metabolism ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Membranes ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Periplasmic Binding Proteins - chemistry ; Periplasmic Binding Proteins - genetics ; Periplasmic Binding Proteins - metabolism ; Phenotype ; Phylogeny ; Proteins ; Residues</subject><ispartof>Biometals, 2002-06, Vol.15 (2), p.121-131</ispartof><rights>Kluwer Academic Publishers 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c9c278c0af73ff97cdfa739e8e5f5ca0715144e9e51a457a74ef9a47c3c2f2383</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12046920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clarke, Teresa E</creatorcontrib><creatorcontrib>Rohrbach, Martin R</creatorcontrib><creatorcontrib>Tari, Leslie W</creatorcontrib><creatorcontrib>Vogel, Hans J</creatorcontrib><creatorcontrib>Köster, Wolfgang</creatorcontrib><title>Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions</title><title>Biometals</title><addtitle>Biometals</addtitle><description>Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long alpha-helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>ATP</subject><subject>Bacteria</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Conserved Sequence - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Evolution, Molecular</subject><subject>Ferric Compounds - metabolism</subject><subject>Gram-positive bacteria</subject><subject>Hydroxamic Acids - metabolism</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Periplasmic Binding Proteins - chemistry</subject><subject>Periplasmic Binding Proteins - genetics</subject><subject>Periplasmic Binding Proteins - metabolism</subject><subject>Phenotype</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Residues</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp90c1LJTEMAPAiK_r8OHtbigc9jfZz0noT9e0Kghc9D7WT-ipvOtrOiP73VnRZ2MOeQsKPhCSEHHB2wpmQp-dnnHEtlNWyxnaDLLgG0RgA-YMsmG3bhhmltslOKU-MMQus3SLbXDDVWsEWZFhiztHT1Xufxzc3uAnpQ0x9TI_0OY8TxkSXq_mShjwO9Kr4FVa-io76cR3P6DBPLk2FVubHVDC_Yk9d6mkaU_O3kvEx1mSPbAa3Lrj_HXfJ_fLq7uJ3c3P76_ri_KbxUpup8dYLMJ65ADIEC74PDqRFgzpo7xhwzZVCi5o7pcGBwmCdAi-9CEIauUuOv_rWFV5mLFM3xOJxvXYJx7l0YEAwo8WnPPq_5GB4nV3h4T_waZxzqlt0oOoTFDBW0c9vND8M2HfPOQ4uv3d_7i0_ACyzgpA</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Clarke, Teresa E</creator><creator>Rohrbach, Martin R</creator><creator>Tari, Leslie W</creator><creator>Vogel, Hans J</creator><creator>Köster, Wolfgang</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20020601</creationdate><title>Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions</title><author>Clarke, Teresa E ; Rohrbach, Martin R ; Tari, Leslie W ; Vogel, Hans J ; Köster, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c9c278c0af73ff97cdfa739e8e5f5ca0715144e9e51a457a74ef9a47c3c2f2383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>ATP</topic><topic>Bacteria</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Conserved Sequence - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Evolution, Molecular</topic><topic>Ferric Compounds - metabolism</topic><topic>Gram-positive bacteria</topic><topic>Hydroxamic Acids - metabolism</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Periplasmic Binding Proteins - chemistry</topic><topic>Periplasmic Binding Proteins - genetics</topic><topic>Periplasmic Binding Proteins - metabolism</topic><topic>Phenotype</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Residues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clarke, Teresa E</creatorcontrib><creatorcontrib>Rohrbach, Martin R</creatorcontrib><creatorcontrib>Tari, Leslie W</creatorcontrib><creatorcontrib>Vogel, Hans J</creatorcontrib><creatorcontrib>Köster, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clarke, Teresa E</au><au>Rohrbach, Martin R</au><au>Tari, Leslie W</au><au>Vogel, Hans J</au><au>Köster, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions</atitle><jtitle>Biometals</jtitle><addtitle>Biometals</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>15</volume><issue>2</issue><spage>121</spage><epage>131</epage><pages>121-131</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long alpha-helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>12046920</pmid><doi>10.1023/A:1015249530156</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-0844 |
ispartof | Biometals, 2002-06, Vol.15 (2), p.121-131 |
issn | 0966-0844 1572-8773 |
language | eng |
recordid | cdi_proquest_miscellaneous_787208528 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Amino Acid Sequence Amino acids ATP Bacteria Carrier Proteins - chemistry Carrier Proteins - genetics Carrier Proteins - metabolism Conserved Sequence - genetics E coli Escherichia coli Escherichia coli - genetics Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Evolution, Molecular Ferric Compounds - metabolism Gram-positive bacteria Hydroxamic Acids - metabolism Membrane Transport Proteins - chemistry Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Membranes Models, Molecular Molecular Sequence Data Mutation Periplasmic Binding Proteins - chemistry Periplasmic Binding Proteins - genetics Periplasmic Binding Proteins - metabolism Phenotype Phylogeny Proteins Residues |
title | Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferric%20hydroxamate%20binding%20protein%20FhuD%20from%20Escherichia%20coli:%20mutants%20in%20conserved%20and%20non-conserved%20regions&rft.jtitle=Biometals&rft.au=Clarke,%20Teresa%20E&rft.date=2002-06-01&rft.volume=15&rft.issue=2&rft.spage=121&rft.epage=131&rft.pages=121-131&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1023/A:1015249530156&rft_dat=%3Cproquest_pubme%3E71781739%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=741014700&rft_id=info:pmid/12046920&rfr_iscdi=true |