Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions

Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometals 2002-06, Vol.15 (2), p.121-131
Hauptverfasser: Clarke, Teresa E, Rohrbach, Martin R, Tari, Leslie W, Vogel, Hans J, Köster, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 2
container_start_page 121
container_title Biometals
container_volume 15
creator Clarke, Teresa E
Rohrbach, Martin R
Tari, Leslie W
Vogel, Hans J
Köster, Wolfgang
description Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long alpha-helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.
doi_str_mv 10.1023/A:1015249530156
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_787208528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71781739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c9c278c0af73ff97cdfa739e8e5f5ca0715144e9e51a457a74ef9a47c3c2f2383</originalsourceid><addsrcrecordid>eNp90c1LJTEMAPAiK_r8OHtbigc9jfZz0noT9e0Kghc9D7WT-ipvOtrOiP73VnRZ2MOeQsKPhCSEHHB2wpmQp-dnnHEtlNWyxnaDLLgG0RgA-YMsmG3bhhmltslOKU-MMQus3SLbXDDVWsEWZFhiztHT1Xufxzc3uAnpQ0x9TI_0OY8TxkSXq_mShjwO9Kr4FVa-io76cR3P6DBPLk2FVubHVDC_Yk9d6mkaU_O3kvEx1mSPbAa3Lrj_HXfJ_fLq7uJ3c3P76_ri_KbxUpup8dYLMJ65ADIEC74PDqRFgzpo7xhwzZVCi5o7pcGBwmCdAi-9CEIauUuOv_rWFV5mLFM3xOJxvXYJx7l0YEAwo8WnPPq_5GB4nV3h4T_waZxzqlt0oOoTFDBW0c9vND8M2HfPOQ4uv3d_7i0_ACyzgpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>741014700</pqid></control><display><type>article</type><title>Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Clarke, Teresa E ; Rohrbach, Martin R ; Tari, Leslie W ; Vogel, Hans J ; Köster, Wolfgang</creator><creatorcontrib>Clarke, Teresa E ; Rohrbach, Martin R ; Tari, Leslie W ; Vogel, Hans J ; Köster, Wolfgang</creatorcontrib><description>Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long alpha-helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1023/A:1015249530156</identifier><identifier>PMID: 12046920</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Amino Acid Sequence ; Amino acids ; ATP ; Bacteria ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Conserved Sequence - genetics ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Evolution, Molecular ; Ferric Compounds - metabolism ; Gram-positive bacteria ; Hydroxamic Acids - metabolism ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Membranes ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Periplasmic Binding Proteins - chemistry ; Periplasmic Binding Proteins - genetics ; Periplasmic Binding Proteins - metabolism ; Phenotype ; Phylogeny ; Proteins ; Residues</subject><ispartof>Biometals, 2002-06, Vol.15 (2), p.121-131</ispartof><rights>Kluwer Academic Publishers 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c9c278c0af73ff97cdfa739e8e5f5ca0715144e9e51a457a74ef9a47c3c2f2383</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12046920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clarke, Teresa E</creatorcontrib><creatorcontrib>Rohrbach, Martin R</creatorcontrib><creatorcontrib>Tari, Leslie W</creatorcontrib><creatorcontrib>Vogel, Hans J</creatorcontrib><creatorcontrib>Köster, Wolfgang</creatorcontrib><title>Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions</title><title>Biometals</title><addtitle>Biometals</addtitle><description>Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long alpha-helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>ATP</subject><subject>Bacteria</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Conserved Sequence - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Evolution, Molecular</subject><subject>Ferric Compounds - metabolism</subject><subject>Gram-positive bacteria</subject><subject>Hydroxamic Acids - metabolism</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Periplasmic Binding Proteins - chemistry</subject><subject>Periplasmic Binding Proteins - genetics</subject><subject>Periplasmic Binding Proteins - metabolism</subject><subject>Phenotype</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Residues</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp90c1LJTEMAPAiK_r8OHtbigc9jfZz0noT9e0Kghc9D7WT-ipvOtrOiP73VnRZ2MOeQsKPhCSEHHB2wpmQp-dnnHEtlNWyxnaDLLgG0RgA-YMsmG3bhhmltslOKU-MMQus3SLbXDDVWsEWZFhiztHT1Xufxzc3uAnpQ0x9TI_0OY8TxkSXq_mShjwO9Kr4FVa-io76cR3P6DBPLk2FVubHVDC_Yk9d6mkaU_O3kvEx1mSPbAa3Lrj_HXfJ_fLq7uJ3c3P76_ri_KbxUpup8dYLMJ65ADIEC74PDqRFgzpo7xhwzZVCi5o7pcGBwmCdAi-9CEIauUuOv_rWFV5mLFM3xOJxvXYJx7l0YEAwo8WnPPq_5GB4nV3h4T_waZxzqlt0oOoTFDBW0c9vND8M2HfPOQ4uv3d_7i0_ACyzgpA</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Clarke, Teresa E</creator><creator>Rohrbach, Martin R</creator><creator>Tari, Leslie W</creator><creator>Vogel, Hans J</creator><creator>Köster, Wolfgang</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20020601</creationdate><title>Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions</title><author>Clarke, Teresa E ; Rohrbach, Martin R ; Tari, Leslie W ; Vogel, Hans J ; Köster, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c9c278c0af73ff97cdfa739e8e5f5ca0715144e9e51a457a74ef9a47c3c2f2383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>ATP</topic><topic>Bacteria</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Conserved Sequence - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Evolution, Molecular</topic><topic>Ferric Compounds - metabolism</topic><topic>Gram-positive bacteria</topic><topic>Hydroxamic Acids - metabolism</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Periplasmic Binding Proteins - chemistry</topic><topic>Periplasmic Binding Proteins - genetics</topic><topic>Periplasmic Binding Proteins - metabolism</topic><topic>Phenotype</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Residues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clarke, Teresa E</creatorcontrib><creatorcontrib>Rohrbach, Martin R</creatorcontrib><creatorcontrib>Tari, Leslie W</creatorcontrib><creatorcontrib>Vogel, Hans J</creatorcontrib><creatorcontrib>Köster, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clarke, Teresa E</au><au>Rohrbach, Martin R</au><au>Tari, Leslie W</au><au>Vogel, Hans J</au><au>Köster, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions</atitle><jtitle>Biometals</jtitle><addtitle>Biometals</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>15</volume><issue>2</issue><spage>121</spage><epage>131</epage><pages>121-131</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long alpha-helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>12046920</pmid><doi>10.1023/A:1015249530156</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0966-0844
ispartof Biometals, 2002-06, Vol.15 (2), p.121-131
issn 0966-0844
1572-8773
language eng
recordid cdi_proquest_miscellaneous_787208528
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Amino Acid Sequence
Amino acids
ATP
Bacteria
Carrier Proteins - chemistry
Carrier Proteins - genetics
Carrier Proteins - metabolism
Conserved Sequence - genetics
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Evolution, Molecular
Ferric Compounds - metabolism
Gram-positive bacteria
Hydroxamic Acids - metabolism
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Membranes
Models, Molecular
Molecular Sequence Data
Mutation
Periplasmic Binding Proteins - chemistry
Periplasmic Binding Proteins - genetics
Periplasmic Binding Proteins - metabolism
Phenotype
Phylogeny
Proteins
Residues
title Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferric%20hydroxamate%20binding%20protein%20FhuD%20from%20Escherichia%20coli:%20mutants%20in%20conserved%20and%20non-conserved%20regions&rft.jtitle=Biometals&rft.au=Clarke,%20Teresa%20E&rft.date=2002-06-01&rft.volume=15&rft.issue=2&rft.spage=121&rft.epage=131&rft.pages=121-131&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1023/A:1015249530156&rft_dat=%3Cproquest_pubme%3E71781739%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=741014700&rft_id=info:pmid/12046920&rfr_iscdi=true