Towards Earth AntineutRino TomograpHy (EARTH)

The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection. Re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth, moon, and planets moon, and planets, 2006-12, Vol.99 (1-4), p.193-206
Hauptverfasser: de Meijer, R. J., Smit, F. D., Brooks, F. D., Fearick, R. W., Wörtche, H. J., Mantovani, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 1-4
container_start_page 193
container_title Earth, moon, and planets
container_volume 99
creator de Meijer, R. J.
Smit, F. D.
Brooks, F. D.
Fearick, R. W.
Wörtche, H. J.
Mantovani, F.
description The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection. Recent hypotheses target the core-mantle boundary (CMB) as a major source of natural radionuclides and therefore of radiogenic heat. A typical scale of the processes that take place at the CMB is about 200 km. To observe these processes from the surface requires an angular resolution of about 3°. EARTH aims at creating a high-resolution 3D-map of the radiogenic heat sources in the Earth’s interior. It will thereby contribute to a better understanding of a number of geophysical phenomena observed at the Earth’s surface. This condition requires a completely different approach from the monolithic detector systems as e.g. KamLAND.This paper presents, for such telescopes, the boundary conditions set by physics, the estimated count rates, and the first initial results from Monte-Carlo simulations and laboratory experiments. The Monte-Carlo simulations indicate that the large volume telescope should consist of detector modules each comprising a very large number of detector units, with a cross section of roughly a few square centimetres. The signature of an antineutrino event will be a double pulse event. One pulse arises from the slowing down of the emitted positron, the other from the neutron capture. In laboratory experiments small sized, 10B-loaded liquid scintillation detectors were investigated as candidates for direction sensitive, low-energy antineutrino detection.
doi_str_mv 10.1007/s11038-006-9104-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787199568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2908976439</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-12ac9cff16a84e2fe865eafd6de809b2318c16c74f2144d2c57cced02f7456bb3</originalsourceid><addsrcrecordid>eNp90UtLAzEQwPHgA6y1H8DbouDjEJ1JsnkcS6lWKAilnkOazeqWdrcmW6Tf3i31JOhpDvNjYPgTconwgADqMSEC1xRAUoMgqD4iPcwVp6CMOCYDo3S3VwqUlOyE9AClooaZ_Iycp7QEAME06xE6b75cLFI2drH9yIZ1W9Vh286qusnmzbp5j24z2WV34-FsPrm_IKelW6Uw-Jl98vY0no8mdPr6_DIaTqnjWrYUmfPGlyVKp0VgZdAyD64sZBE0mAXjqD1Kr0TJUIiC-Vx5HwpgpRK5XCx4n9we7m5i87kNqbXrKvmwWrk6NNtklVZoTC51J2_-laxjXCB28OoXXDbbWHdfWCWY4EwK06HrvxAzoI2Sgu8VHpSPTUoxlHYTq7WLO4tg93XsoY7t6th9Hav5N9X6fJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908976439</pqid></control><display><type>article</type><title>Towards Earth AntineutRino TomograpHy (EARTH)</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>de Meijer, R. J. ; Smit, F. D. ; Brooks, F. D. ; Fearick, R. W. ; Wörtche, H. J. ; Mantovani, F.</creator><creatorcontrib>de Meijer, R. J. ; Smit, F. D. ; Brooks, F. D. ; Fearick, R. W. ; Wörtche, H. J. ; Mantovani, F.</creatorcontrib><description>The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection. Recent hypotheses target the core-mantle boundary (CMB) as a major source of natural radionuclides and therefore of radiogenic heat. A typical scale of the processes that take place at the CMB is about 200 km. To observe these processes from the surface requires an angular resolution of about 3°. EARTH aims at creating a high-resolution 3D-map of the radiogenic heat sources in the Earth’s interior. It will thereby contribute to a better understanding of a number of geophysical phenomena observed at the Earth’s surface. This condition requires a completely different approach from the monolithic detector systems as e.g. KamLAND.This paper presents, for such telescopes, the boundary conditions set by physics, the estimated count rates, and the first initial results from Monte-Carlo simulations and laboratory experiments. The Monte-Carlo simulations indicate that the large volume telescope should consist of detector modules each comprising a very large number of detector units, with a cross section of roughly a few square centimetres. The signature of an antineutrino event will be a double pulse event. One pulse arises from the slowing down of the emitted positron, the other from the neutron capture. In laboratory experiments small sized, 10B-loaded liquid scintillation detectors were investigated as candidates for direction sensitive, low-energy antineutrino detection.</description><identifier>ISSN: 0167-9295</identifier><identifier>ISBN: 9780387707662</identifier><identifier>ISBN: 0387707662</identifier><identifier>EISSN: 1573-0794</identifier><identifier>DOI: 10.1007/s11038-006-9104-8</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Angular resolution ; Boundary conditions ; Core-mantle boundary ; Earth ; Earth surface ; Geology ; Geophysics ; Heat sources ; Laboratory experiments ; Modules ; Monte Carlo simulation ; Nuclear capture ; Radioisotopes ; Sensors ; Studies ; Target detection ; Telescopes ; Tomography</subject><ispartof>Earth, moon, and planets, 2006-12, Vol.99 (1-4), p.193-206</ispartof><rights>Springer Science+Business Media B.V. 2006.</rights><rights>Springer Science+Business Media, Inc. 2007</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-12ac9cff16a84e2fe865eafd6de809b2318c16c74f2144d2c57cced02f7456bb3</citedby><cites>FETCH-LOGICAL-a386t-12ac9cff16a84e2fe865eafd6de809b2318c16c74f2144d2c57cced02f7456bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>de Meijer, R. J.</creatorcontrib><creatorcontrib>Smit, F. D.</creatorcontrib><creatorcontrib>Brooks, F. D.</creatorcontrib><creatorcontrib>Fearick, R. W.</creatorcontrib><creatorcontrib>Wörtche, H. J.</creatorcontrib><creatorcontrib>Mantovani, F.</creatorcontrib><title>Towards Earth AntineutRino TomograpHy (EARTH)</title><title>Earth, moon, and planets</title><description>The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection. Recent hypotheses target the core-mantle boundary (CMB) as a major source of natural radionuclides and therefore of radiogenic heat. A typical scale of the processes that take place at the CMB is about 200 km. To observe these processes from the surface requires an angular resolution of about 3°. EARTH aims at creating a high-resolution 3D-map of the radiogenic heat sources in the Earth’s interior. It will thereby contribute to a better understanding of a number of geophysical phenomena observed at the Earth’s surface. This condition requires a completely different approach from the monolithic detector systems as e.g. KamLAND.This paper presents, for such telescopes, the boundary conditions set by physics, the estimated count rates, and the first initial results from Monte-Carlo simulations and laboratory experiments. The Monte-Carlo simulations indicate that the large volume telescope should consist of detector modules each comprising a very large number of detector units, with a cross section of roughly a few square centimetres. The signature of an antineutrino event will be a double pulse event. One pulse arises from the slowing down of the emitted positron, the other from the neutron capture. In laboratory experiments small sized, 10B-loaded liquid scintillation detectors were investigated as candidates for direction sensitive, low-energy antineutrino detection.</description><subject>Angular resolution</subject><subject>Boundary conditions</subject><subject>Core-mantle boundary</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Heat sources</subject><subject>Laboratory experiments</subject><subject>Modules</subject><subject>Monte Carlo simulation</subject><subject>Nuclear capture</subject><subject>Radioisotopes</subject><subject>Sensors</subject><subject>Studies</subject><subject>Target detection</subject><subject>Telescopes</subject><subject>Tomography</subject><issn>0167-9295</issn><issn>1573-0794</issn><isbn>9780387707662</isbn><isbn>0387707662</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90UtLAzEQwPHgA6y1H8DbouDjEJ1JsnkcS6lWKAilnkOazeqWdrcmW6Tf3i31JOhpDvNjYPgTconwgADqMSEC1xRAUoMgqD4iPcwVp6CMOCYDo3S3VwqUlOyE9AClooaZ_Iycp7QEAME06xE6b75cLFI2drH9yIZ1W9Vh286qusnmzbp5j24z2WV34-FsPrm_IKelW6Uw-Jl98vY0no8mdPr6_DIaTqnjWrYUmfPGlyVKp0VgZdAyD64sZBE0mAXjqD1Kr0TJUIiC-Vx5HwpgpRK5XCx4n9we7m5i87kNqbXrKvmwWrk6NNtklVZoTC51J2_-laxjXCB28OoXXDbbWHdfWCWY4EwK06HrvxAzoI2Sgu8VHpSPTUoxlHYTq7WLO4tg93XsoY7t6th9Hav5N9X6fJc</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>de Meijer, R. J.</creator><creator>Smit, F. D.</creator><creator>Brooks, F. D.</creator><creator>Fearick, R. W.</creator><creator>Wörtche, H. J.</creator><creator>Mantovani, F.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20061201</creationdate><title>Towards Earth AntineutRino TomograpHy (EARTH)</title><author>de Meijer, R. J. ; Smit, F. D. ; Brooks, F. D. ; Fearick, R. W. ; Wörtche, H. J. ; Mantovani, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-12ac9cff16a84e2fe865eafd6de809b2318c16c74f2144d2c57cced02f7456bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Angular resolution</topic><topic>Boundary conditions</topic><topic>Core-mantle boundary</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Heat sources</topic><topic>Laboratory experiments</topic><topic>Modules</topic><topic>Monte Carlo simulation</topic><topic>Nuclear capture</topic><topic>Radioisotopes</topic><topic>Sensors</topic><topic>Studies</topic><topic>Target detection</topic><topic>Telescopes</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>de Meijer, R. J.</creatorcontrib><creatorcontrib>Smit, F. D.</creatorcontrib><creatorcontrib>Brooks, F. D.</creatorcontrib><creatorcontrib>Fearick, R. W.</creatorcontrib><creatorcontrib>Wörtche, H. J.</creatorcontrib><creatorcontrib>Mantovani, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Earth, moon, and planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Meijer, R. J.</au><au>Smit, F. D.</au><au>Brooks, F. D.</au><au>Fearick, R. W.</au><au>Wörtche, H. J.</au><au>Mantovani, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Earth AntineutRino TomograpHy (EARTH)</atitle><jtitle>Earth, moon, and planets</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>99</volume><issue>1-4</issue><spage>193</spage><epage>206</epage><pages>193-206</pages><issn>0167-9295</issn><eissn>1573-0794</eissn><isbn>9780387707662</isbn><isbn>0387707662</isbn><abstract>The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection. Recent hypotheses target the core-mantle boundary (CMB) as a major source of natural radionuclides and therefore of radiogenic heat. A typical scale of the processes that take place at the CMB is about 200 km. To observe these processes from the surface requires an angular resolution of about 3°. EARTH aims at creating a high-resolution 3D-map of the radiogenic heat sources in the Earth’s interior. It will thereby contribute to a better understanding of a number of geophysical phenomena observed at the Earth’s surface. This condition requires a completely different approach from the monolithic detector systems as e.g. KamLAND.This paper presents, for such telescopes, the boundary conditions set by physics, the estimated count rates, and the first initial results from Monte-Carlo simulations and laboratory experiments. The Monte-Carlo simulations indicate that the large volume telescope should consist of detector modules each comprising a very large number of detector units, with a cross section of roughly a few square centimetres. The signature of an antineutrino event will be a double pulse event. One pulse arises from the slowing down of the emitted positron, the other from the neutron capture. In laboratory experiments small sized, 10B-loaded liquid scintillation detectors were investigated as candidates for direction sensitive, low-energy antineutrino detection.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11038-006-9104-8</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9295
ispartof Earth, moon, and planets, 2006-12, Vol.99 (1-4), p.193-206
issn 0167-9295
1573-0794
language eng
recordid cdi_proquest_miscellaneous_787199568
source EZB-FREE-00999 freely available EZB journals
subjects Angular resolution
Boundary conditions
Core-mantle boundary
Earth
Earth surface
Geology
Geophysics
Heat sources
Laboratory experiments
Modules
Monte Carlo simulation
Nuclear capture
Radioisotopes
Sensors
Studies
Target detection
Telescopes
Tomography
title Towards Earth AntineutRino TomograpHy (EARTH)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Earth%20AntineutRino%20TomograpHy%20(EARTH)&rft.jtitle=Earth,%20moon,%20and%20planets&rft.au=de%20Meijer,%20R.%20J.&rft.date=2006-12-01&rft.volume=99&rft.issue=1-4&rft.spage=193&rft.epage=206&rft.pages=193-206&rft.issn=0167-9295&rft.eissn=1573-0794&rft.isbn=9780387707662&rft.isbn_list=0387707662&rft_id=info:doi/10.1007/s11038-006-9104-8&rft_dat=%3Cproquest_cross%3E2908976439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2908976439&rft_id=info:pmid/&rfr_iscdi=true