Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles
An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity Ua from a round nozzle int...
Gespeichert in:
Veröffentlicht in: | Nihon Kikai Gakkai rombunshuu. B hen 2010-06, Vol.76 (766), p.953-960 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 960 |
---|---|
container_issue | 766 |
container_start_page | 953 |
container_title | Nihon Kikai Gakkai rombunshuu. B hen |
container_volume | 76 |
creator | Yagami, Hisanori Uchiyama, Tomomi |
description | An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity Ua from a round nozzle into the air co-flowing with velocity U(a). The Reynolds number based on Ua and the nozzle diameter is 1333, the velocity ratio U(a)/U(0) is 0.4. Spherical glass particles with diameter 65 urn are loaded at the mass loading ratio 0.025. The particle velocity at the nozzle exit is 0.68U(0a). The particles impose disturbances on the air and induce the three-dimensional flow, resulting in the transition from the axisymmetric flow to the non-axisymmetric one. As the particles make the air velocity fluctuation increase, the air momentum diffuses more in the radial direction, and accordingly the spread of the jet becomes larger. The abovementioned results agree well with the trend of the existing experiments. The proposed vortex method can successfully capture the flow transition caused by the particles laden on an axisymmetric air jet. |
doi_str_mv | 10.1299/kikaib.76.766_953 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_787115286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>787115286</sourcerecordid><originalsourceid>FETCH-LOGICAL-p102t-821e18b0e86dc9847087980bc31fa57c76a7c2d085094c421476a8dadf67343f3</originalsourceid><addsrcrecordid>eNotjE1LwzAYgHNQcMz9AG-5eep807T5OMrQ-VFUnHotafIWw7JmNinTf-9A4YEHnsNDyAWDJSu1vtr6rfHdUoojotU1PyEz4EoWNTBxRhYp-Q4ANBeayxl5_Ihjxm-68bspmOzjQGNPm3igr_gzxOASfZp2HY50bRJ9wEwb43CgB58_6SYG7-iLGbO3AdM5Oe1NSLj495y83968re6K5nl9v7puij2DMheqZMhUB6iEs1pVEpTUCjrLWW9qaaUw0pYOVA26slXJqmNRzrheSF7xns_J5d93P8avCVNudz5ZDMEMGKfUSiUZq0sl-C_Fs1At</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787115286</pqid></control><display><type>article</type><title>Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yagami, Hisanori ; Uchiyama, Tomomi</creator><creatorcontrib>Yagami, Hisanori ; Uchiyama, Tomomi</creatorcontrib><description>An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity Ua from a round nozzle into the air co-flowing with velocity U(a). The Reynolds number based on Ua and the nozzle diameter is 1333, the velocity ratio U(a)/U(0) is 0.4. Spherical glass particles with diameter 65 urn are loaded at the mass loading ratio 0.025. The particle velocity at the nozzle exit is 0.68U(0a). The particles impose disturbances on the air and induce the three-dimensional flow, resulting in the transition from the axisymmetric flow to the non-axisymmetric one. As the particles make the air velocity fluctuation increase, the air momentum diffuses more in the radial direction, and accordingly the spread of the jet becomes larger. The abovementioned results agree well with the trend of the existing experiments. The proposed vortex method can successfully capture the flow transition caused by the particles laden on an axisymmetric air jet.</description><identifier>ISSN: 0387-5016</identifier><identifier>DOI: 10.1299/kikaib.76.766_953</identifier><language>jpn</language><subject>Aerodynamics ; Axisymmetric ; Axisymmetric flow ; Computational fluid dynamics ; Computer simulation ; Diffusion ; Disturbances ; Fluctuation ; Fluid flow ; Glass ; Laminar ; Low Reynolds number ; Mathematical models ; Nozzles ; Reynolds number ; Single-phase flow ; Spreads ; Trends ; Vortices</subject><ispartof>Nihon Kikai Gakkai rombunshuu. B hen, 2010-06, Vol.76 (766), p.953-960</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yagami, Hisanori</creatorcontrib><creatorcontrib>Uchiyama, Tomomi</creatorcontrib><title>Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles</title><title>Nihon Kikai Gakkai rombunshuu. B hen</title><description>An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity Ua from a round nozzle into the air co-flowing with velocity U(a). The Reynolds number based on Ua and the nozzle diameter is 1333, the velocity ratio U(a)/U(0) is 0.4. Spherical glass particles with diameter 65 urn are loaded at the mass loading ratio 0.025. The particle velocity at the nozzle exit is 0.68U(0a). The particles impose disturbances on the air and induce the three-dimensional flow, resulting in the transition from the axisymmetric flow to the non-axisymmetric one. As the particles make the air velocity fluctuation increase, the air momentum diffuses more in the radial direction, and accordingly the spread of the jet becomes larger. The abovementioned results agree well with the trend of the existing experiments. The proposed vortex method can successfully capture the flow transition caused by the particles laden on an axisymmetric air jet.</description><subject>Aerodynamics</subject><subject>Axisymmetric</subject><subject>Axisymmetric flow</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Disturbances</subject><subject>Fluctuation</subject><subject>Fluid flow</subject><subject>Glass</subject><subject>Laminar</subject><subject>Low Reynolds number</subject><subject>Mathematical models</subject><subject>Nozzles</subject><subject>Reynolds number</subject><subject>Single-phase flow</subject><subject>Spreads</subject><subject>Trends</subject><subject>Vortices</subject><issn>0387-5016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotjE1LwzAYgHNQcMz9AG-5eep807T5OMrQ-VFUnHotafIWw7JmNinTf-9A4YEHnsNDyAWDJSu1vtr6rfHdUoojotU1PyEz4EoWNTBxRhYp-Q4ANBeayxl5_Ihjxm-68bspmOzjQGNPm3igr_gzxOASfZp2HY50bRJ9wEwb43CgB58_6SYG7-iLGbO3AdM5Oe1NSLj495y83968re6K5nl9v7puij2DMheqZMhUB6iEs1pVEpTUCjrLWW9qaaUw0pYOVA26slXJqmNRzrheSF7xns_J5d93P8avCVNudz5ZDMEMGKfUSiUZq0sl-C_Fs1At</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Yagami, Hisanori</creator><creator>Uchiyama, Tomomi</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20100601</creationdate><title>Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles</title><author>Yagami, Hisanori ; Uchiyama, Tomomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p102t-821e18b0e86dc9847087980bc31fa57c76a7c2d085094c421476a8dadf67343f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2010</creationdate><topic>Aerodynamics</topic><topic>Axisymmetric</topic><topic>Axisymmetric flow</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Disturbances</topic><topic>Fluctuation</topic><topic>Fluid flow</topic><topic>Glass</topic><topic>Laminar</topic><topic>Low Reynolds number</topic><topic>Mathematical models</topic><topic>Nozzles</topic><topic>Reynolds number</topic><topic>Single-phase flow</topic><topic>Spreads</topic><topic>Trends</topic><topic>Vortices</topic><toplevel>online_resources</toplevel><creatorcontrib>Yagami, Hisanori</creatorcontrib><creatorcontrib>Uchiyama, Tomomi</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Nihon Kikai Gakkai rombunshuu. B hen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yagami, Hisanori</au><au>Uchiyama, Tomomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles</atitle><jtitle>Nihon Kikai Gakkai rombunshuu. B hen</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>76</volume><issue>766</issue><spage>953</spage><epage>960</epage><pages>953-960</pages><issn>0387-5016</issn><abstract>An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity Ua from a round nozzle into the air co-flowing with velocity U(a). The Reynolds number based on Ua and the nozzle diameter is 1333, the velocity ratio U(a)/U(0) is 0.4. Spherical glass particles with diameter 65 urn are loaded at the mass loading ratio 0.025. The particle velocity at the nozzle exit is 0.68U(0a). The particles impose disturbances on the air and induce the three-dimensional flow, resulting in the transition from the axisymmetric flow to the non-axisymmetric one. As the particles make the air velocity fluctuation increase, the air momentum diffuses more in the radial direction, and accordingly the spread of the jet becomes larger. The abovementioned results agree well with the trend of the existing experiments. The proposed vortex method can successfully capture the flow transition caused by the particles laden on an axisymmetric air jet.</abstract><doi>10.1299/kikaib.76.766_953</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0387-5016 |
ispartof | Nihon Kikai Gakkai rombunshuu. B hen, 2010-06, Vol.76 (766), p.953-960 |
issn | 0387-5016 |
language | jpn |
recordid | cdi_proquest_miscellaneous_787115286 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Aerodynamics Axisymmetric Axisymmetric flow Computational fluid dynamics Computer simulation Diffusion Disturbances Fluctuation Fluid flow Glass Laminar Low Reynolds number Mathematical models Nozzles Reynolds number Single-phase flow Spreads Trends Vortices |
title | Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20Simulation%20of%20Low%20Reynolds%20Number%20Gas%20Jet%20Laden%20with%20Solid%20Particles&rft.jtitle=Nihon%20Kikai%20Gakkai%20rombunshuu.%20B%20hen&rft.au=Yagami,%20Hisanori&rft.date=2010-06-01&rft.volume=76&rft.issue=766&rft.spage=953&rft.epage=960&rft.pages=953-960&rft.issn=0387-5016&rft_id=info:doi/10.1299/kikaib.76.766_953&rft_dat=%3Cproquest%3E787115286%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787115286&rft_id=info:pmid/&rfr_iscdi=true |