Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles

An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity Ua from a round nozzle int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nihon Kikai Gakkai rombunshuu. B hen 2010-06, Vol.76 (766), p.953-960
Hauptverfasser: Yagami, Hisanori, Uchiyama, Tomomi
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 960
container_issue 766
container_start_page 953
container_title Nihon Kikai Gakkai rombunshuu. B hen
container_volume 76
creator Yagami, Hisanori
Uchiyama, Tomomi
description An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity Ua from a round nozzle into the air co-flowing with velocity U(a). The Reynolds number based on Ua and the nozzle diameter is 1333, the velocity ratio U(a)/U(0) is 0.4. Spherical glass particles with diameter 65 urn are loaded at the mass loading ratio 0.025. The particle velocity at the nozzle exit is 0.68U(0a). The particles impose disturbances on the air and induce the three-dimensional flow, resulting in the transition from the axisymmetric flow to the non-axisymmetric one. As the particles make the air velocity fluctuation increase, the air momentum diffuses more in the radial direction, and accordingly the spread of the jet becomes larger. The abovementioned results agree well with the trend of the existing experiments. The proposed vortex method can successfully capture the flow transition caused by the particles laden on an axisymmetric air jet.
doi_str_mv 10.1299/kikaib.76.766_953
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_787115286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>787115286</sourcerecordid><originalsourceid>FETCH-LOGICAL-p102t-821e18b0e86dc9847087980bc31fa57c76a7c2d085094c421476a8dadf67343f3</originalsourceid><addsrcrecordid>eNotjE1LwzAYgHNQcMz9AG-5eep807T5OMrQ-VFUnHotafIWw7JmNinTf-9A4YEHnsNDyAWDJSu1vtr6rfHdUoojotU1PyEz4EoWNTBxRhYp-Q4ANBeayxl5_Ihjxm-68bspmOzjQGNPm3igr_gzxOASfZp2HY50bRJ9wEwb43CgB58_6SYG7-iLGbO3AdM5Oe1NSLj495y83968re6K5nl9v7puij2DMheqZMhUB6iEs1pVEpTUCjrLWW9qaaUw0pYOVA26slXJqmNRzrheSF7xns_J5d93P8avCVNudz5ZDMEMGKfUSiUZq0sl-C_Fs1At</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787115286</pqid></control><display><type>article</type><title>Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yagami, Hisanori ; Uchiyama, Tomomi</creator><creatorcontrib>Yagami, Hisanori ; Uchiyama, Tomomi</creatorcontrib><description>An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity Ua from a round nozzle into the air co-flowing with velocity U(a). The Reynolds number based on Ua and the nozzle diameter is 1333, the velocity ratio U(a)/U(0) is 0.4. Spherical glass particles with diameter 65 urn are loaded at the mass loading ratio 0.025. The particle velocity at the nozzle exit is 0.68U(0a). The particles impose disturbances on the air and induce the three-dimensional flow, resulting in the transition from the axisymmetric flow to the non-axisymmetric one. As the particles make the air velocity fluctuation increase, the air momentum diffuses more in the radial direction, and accordingly the spread of the jet becomes larger. The abovementioned results agree well with the trend of the existing experiments. The proposed vortex method can successfully capture the flow transition caused by the particles laden on an axisymmetric air jet.</description><identifier>ISSN: 0387-5016</identifier><identifier>DOI: 10.1299/kikaib.76.766_953</identifier><language>jpn</language><subject>Aerodynamics ; Axisymmetric ; Axisymmetric flow ; Computational fluid dynamics ; Computer simulation ; Diffusion ; Disturbances ; Fluctuation ; Fluid flow ; Glass ; Laminar ; Low Reynolds number ; Mathematical models ; Nozzles ; Reynolds number ; Single-phase flow ; Spreads ; Trends ; Vortices</subject><ispartof>Nihon Kikai Gakkai rombunshuu. B hen, 2010-06, Vol.76 (766), p.953-960</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yagami, Hisanori</creatorcontrib><creatorcontrib>Uchiyama, Tomomi</creatorcontrib><title>Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles</title><title>Nihon Kikai Gakkai rombunshuu. B hen</title><description>An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity Ua from a round nozzle into the air co-flowing with velocity U(a). The Reynolds number based on Ua and the nozzle diameter is 1333, the velocity ratio U(a)/U(0) is 0.4. Spherical glass particles with diameter 65 urn are loaded at the mass loading ratio 0.025. The particle velocity at the nozzle exit is 0.68U(0a). The particles impose disturbances on the air and induce the three-dimensional flow, resulting in the transition from the axisymmetric flow to the non-axisymmetric one. As the particles make the air velocity fluctuation increase, the air momentum diffuses more in the radial direction, and accordingly the spread of the jet becomes larger. The abovementioned results agree well with the trend of the existing experiments. The proposed vortex method can successfully capture the flow transition caused by the particles laden on an axisymmetric air jet.</description><subject>Aerodynamics</subject><subject>Axisymmetric</subject><subject>Axisymmetric flow</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Disturbances</subject><subject>Fluctuation</subject><subject>Fluid flow</subject><subject>Glass</subject><subject>Laminar</subject><subject>Low Reynolds number</subject><subject>Mathematical models</subject><subject>Nozzles</subject><subject>Reynolds number</subject><subject>Single-phase flow</subject><subject>Spreads</subject><subject>Trends</subject><subject>Vortices</subject><issn>0387-5016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotjE1LwzAYgHNQcMz9AG-5eep807T5OMrQ-VFUnHotafIWw7JmNinTf-9A4YEHnsNDyAWDJSu1vtr6rfHdUoojotU1PyEz4EoWNTBxRhYp-Q4ANBeayxl5_Ihjxm-68bspmOzjQGNPm3igr_gzxOASfZp2HY50bRJ9wEwb43CgB58_6SYG7-iLGbO3AdM5Oe1NSLj495y83968re6K5nl9v7puij2DMheqZMhUB6iEs1pVEpTUCjrLWW9qaaUw0pYOVA26slXJqmNRzrheSF7xns_J5d93P8avCVNudz5ZDMEMGKfUSiUZq0sl-C_Fs1At</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Yagami, Hisanori</creator><creator>Uchiyama, Tomomi</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20100601</creationdate><title>Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles</title><author>Yagami, Hisanori ; Uchiyama, Tomomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p102t-821e18b0e86dc9847087980bc31fa57c76a7c2d085094c421476a8dadf67343f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2010</creationdate><topic>Aerodynamics</topic><topic>Axisymmetric</topic><topic>Axisymmetric flow</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Disturbances</topic><topic>Fluctuation</topic><topic>Fluid flow</topic><topic>Glass</topic><topic>Laminar</topic><topic>Low Reynolds number</topic><topic>Mathematical models</topic><topic>Nozzles</topic><topic>Reynolds number</topic><topic>Single-phase flow</topic><topic>Spreads</topic><topic>Trends</topic><topic>Vortices</topic><toplevel>online_resources</toplevel><creatorcontrib>Yagami, Hisanori</creatorcontrib><creatorcontrib>Uchiyama, Tomomi</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Nihon Kikai Gakkai rombunshuu. B hen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yagami, Hisanori</au><au>Uchiyama, Tomomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles</atitle><jtitle>Nihon Kikai Gakkai rombunshuu. B hen</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>76</volume><issue>766</issue><spage>953</spage><epage>960</epage><pages>953-960</pages><issn>0387-5016</issn><abstract>An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity Ua from a round nozzle into the air co-flowing with velocity U(a). The Reynolds number based on Ua and the nozzle diameter is 1333, the velocity ratio U(a)/U(0) is 0.4. Spherical glass particles with diameter 65 urn are loaded at the mass loading ratio 0.025. The particle velocity at the nozzle exit is 0.68U(0a). The particles impose disturbances on the air and induce the three-dimensional flow, resulting in the transition from the axisymmetric flow to the non-axisymmetric one. As the particles make the air velocity fluctuation increase, the air momentum diffuses more in the radial direction, and accordingly the spread of the jet becomes larger. The abovementioned results agree well with the trend of the existing experiments. The proposed vortex method can successfully capture the flow transition caused by the particles laden on an axisymmetric air jet.</abstract><doi>10.1299/kikaib.76.766_953</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0387-5016
ispartof Nihon Kikai Gakkai rombunshuu. B hen, 2010-06, Vol.76 (766), p.953-960
issn 0387-5016
language jpn
recordid cdi_proquest_miscellaneous_787115286
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Aerodynamics
Axisymmetric
Axisymmetric flow
Computational fluid dynamics
Computer simulation
Diffusion
Disturbances
Fluctuation
Fluid flow
Glass
Laminar
Low Reynolds number
Mathematical models
Nozzles
Reynolds number
Single-phase flow
Spreads
Trends
Vortices
title Vortex Simulation of Low Reynolds Number Gas Jet Laden with Solid Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20Simulation%20of%20Low%20Reynolds%20Number%20Gas%20Jet%20Laden%20with%20Solid%20Particles&rft.jtitle=Nihon%20Kikai%20Gakkai%20rombunshuu.%20B%20hen&rft.au=Yagami,%20Hisanori&rft.date=2010-06-01&rft.volume=76&rft.issue=766&rft.spage=953&rft.epage=960&rft.pages=953-960&rft.issn=0387-5016&rft_id=info:doi/10.1299/kikaib.76.766_953&rft_dat=%3Cproquest%3E787115286%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787115286&rft_id=info:pmid/&rfr_iscdi=true