Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model

Flight testing for aeroservoelastic clearance is an expensive and time consuming process. Large degree-of-freedom high-fidelity nonlinear aircraft models using computational fluid dynamics coupled with finite element models can be used for accurately predicting aeroelastic phenomena in all flight re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2010-07, Vol.47 (4), p.1274-1282
Hauptverfasser: Danowsky, Brian P, Thompson, Peter M, Farhat, Charbel, Lieu, Thuan, Harris, Chuck, Lechniak, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1282
container_issue 4
container_start_page 1274
container_title Journal of aircraft
container_volume 47
creator Danowsky, Brian P
Thompson, Peter M
Farhat, Charbel
Lieu, Thuan
Harris, Chuck
Lechniak, Jason
description Flight testing for aeroservoelastic clearance is an expensive and time consuming process. Large degree-of-freedom high-fidelity nonlinear aircraft models using computational fluid dynamics coupled with finite element models can be used for accurately predicting aeroelastic phenomena in all flight regimes including subsonic, supersonic, and transonic. With the incorporation of an active feedback control system, these high-fidelity models can be used to reduce the flight-test time needed for aeroservoelastic clearance. Accurate computational fluid dynamics/finite element models are computationally complex, rendering their runtime ill suited for adequate flight control system design. In this work, a complex, large-degree-of-freedom, transonic, inviscid computational fluid dynamics/finite element model of a fighter aircraft is fitted with a flight control system for aeroelastic oscillation reduction. A linear reduced-order model of the complete aeroelastic aircraft dynamic system is produced directly from the high-order nonlinear computational fluid dynamics/finite element model. This rapid runtime reduced-order model is used for the design of the flight control system, which includes models of the actuators and common nonlinearities in the form of rate limiting and saturation. The oscillation reduction controller is successfully demonstrated via a simulated flight test using the high-fidelity nonlinear computational fluid dynamics/finite element/flight control system model. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.47119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787067857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113350901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-c066603420bfcd868607103b6258e437f9ee6505aaeb8b22ecfd594ba0b67e853</originalsourceid><addsrcrecordid>eNpt0E1rVDEUBuAgCo5V_AtBFOni1uTmc5bD4LSFihvdGs7NPdHU9GZMMmL_vdEOFoqrLM7De94cQl5ydjYqLt_xM2k4Xz8iK66EGITV9jFZMTbywWq9fkqe1XrNGLPMmBX5crn4XPa5QIt5oTnQHeI8gf9Ot3lpJScal5Yp0Iv49duwizOm2G7pBkuuWH5mTFBb9HTXxw0L3cTiC4RGP-ROn5MnAVLFF8f3hHzevf-0vRiuPp5fbjdXAwhj2uCZ1poJObIp-Lk31sxwJiY9KotSmLBG1IopAJzsNI7ow6zWcgI2aYNWiRPy9i53X_KPA9bmbmL1mBIsmA_VGWuYNlaZLl89kNf5UJZezhkppZK9yn2c77-sBYPbl3gD5dZx5v5c2XH398pdvjnGQfWQQoHFx_qPj4JLw6zo7vTOQQS4X3mMcfs5uHBIqeGv1u3r_9oHq38DgYqUqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744454066</pqid></control><display><type>article</type><title>Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model</title><source>Alma/SFX Local Collection</source><creator>Danowsky, Brian P ; Thompson, Peter M ; Farhat, Charbel ; Lieu, Thuan ; Harris, Chuck ; Lechniak, Jason</creator><creatorcontrib>Danowsky, Brian P ; Thompson, Peter M ; Farhat, Charbel ; Lieu, Thuan ; Harris, Chuck ; Lechniak, Jason</creatorcontrib><description>Flight testing for aeroservoelastic clearance is an expensive and time consuming process. Large degree-of-freedom high-fidelity nonlinear aircraft models using computational fluid dynamics coupled with finite element models can be used for accurately predicting aeroelastic phenomena in all flight regimes including subsonic, supersonic, and transonic. With the incorporation of an active feedback control system, these high-fidelity models can be used to reduce the flight-test time needed for aeroservoelastic clearance. Accurate computational fluid dynamics/finite element models are computationally complex, rendering their runtime ill suited for adequate flight control system design. In this work, a complex, large-degree-of-freedom, transonic, inviscid computational fluid dynamics/finite element model of a fighter aircraft is fitted with a flight control system for aeroelastic oscillation reduction. A linear reduced-order model of the complete aeroelastic aircraft dynamic system is produced directly from the high-order nonlinear computational fluid dynamics/finite element model. This rapid runtime reduced-order model is used for the design of the flight control system, which includes models of the actuators and common nonlinearities in the form of rate limiting and saturation. The oscillation reduction controller is successfully demonstrated via a simulated flight test using the high-fidelity nonlinear computational fluid dynamics/finite element/flight control system model. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.47119</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Active control ; Actuators ; Aerodynamics ; Aeroelasticity ; Aerospace engineering ; Aircraft ; Aircraft models ; Clearances ; Computational fluid dynamics ; Computer simulation ; Constraining ; Control systems ; Degrees of freedom ; Design engineering ; Dynamical systems ; Exact sciences and technology ; Feedback control ; Feedback control systems ; Fighter aircraft ; Finite element method ; Flight control systems ; Flight testing ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Mathematical analysis ; Mathematical models ; Military aircraft ; Nonlinear dynamics ; Nonlinearity ; Oscillations ; Physics ; Reduction ; Rendering ; Saturation ; Solid mechanics ; Structural and continuum mechanics ; Subsonic aircraft ; Supersonic aircraft ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of aircraft, 2010-07, Vol.47 (4), p.1274-1282</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul/Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-c066603420bfcd868607103b6258e437f9ee6505aaeb8b22ecfd594ba0b67e853</citedby><cites>FETCH-LOGICAL-a377t-c066603420bfcd868607103b6258e437f9ee6505aaeb8b22ecfd594ba0b67e853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23147083$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Danowsky, Brian P</creatorcontrib><creatorcontrib>Thompson, Peter M</creatorcontrib><creatorcontrib>Farhat, Charbel</creatorcontrib><creatorcontrib>Lieu, Thuan</creatorcontrib><creatorcontrib>Harris, Chuck</creatorcontrib><creatorcontrib>Lechniak, Jason</creatorcontrib><title>Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model</title><title>Journal of aircraft</title><description>Flight testing for aeroservoelastic clearance is an expensive and time consuming process. Large degree-of-freedom high-fidelity nonlinear aircraft models using computational fluid dynamics coupled with finite element models can be used for accurately predicting aeroelastic phenomena in all flight regimes including subsonic, supersonic, and transonic. With the incorporation of an active feedback control system, these high-fidelity models can be used to reduce the flight-test time needed for aeroservoelastic clearance. Accurate computational fluid dynamics/finite element models are computationally complex, rendering their runtime ill suited for adequate flight control system design. In this work, a complex, large-degree-of-freedom, transonic, inviscid computational fluid dynamics/finite element model of a fighter aircraft is fitted with a flight control system for aeroelastic oscillation reduction. A linear reduced-order model of the complete aeroelastic aircraft dynamic system is produced directly from the high-order nonlinear computational fluid dynamics/finite element model. This rapid runtime reduced-order model is used for the design of the flight control system, which includes models of the actuators and common nonlinearities in the form of rate limiting and saturation. The oscillation reduction controller is successfully demonstrated via a simulated flight test using the high-fidelity nonlinear computational fluid dynamics/finite element/flight control system model. [PUBLICATION ABSTRACT]</description><subject>Active control</subject><subject>Actuators</subject><subject>Aerodynamics</subject><subject>Aeroelasticity</subject><subject>Aerospace engineering</subject><subject>Aircraft</subject><subject>Aircraft models</subject><subject>Clearances</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Control systems</subject><subject>Degrees of freedom</subject><subject>Design engineering</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Fighter aircraft</subject><subject>Finite element method</subject><subject>Flight control systems</subject><subject>Flight testing</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Military aircraft</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Reduction</subject><subject>Rendering</subject><subject>Saturation</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Subsonic aircraft</subject><subject>Supersonic aircraft</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0E1rVDEUBuAgCo5V_AtBFOni1uTmc5bD4LSFihvdGs7NPdHU9GZMMmL_vdEOFoqrLM7De94cQl5ydjYqLt_xM2k4Xz8iK66EGITV9jFZMTbywWq9fkqe1XrNGLPMmBX5crn4XPa5QIt5oTnQHeI8gf9Ot3lpJScal5Yp0Iv49duwizOm2G7pBkuuWH5mTFBb9HTXxw0L3cTiC4RGP-ROn5MnAVLFF8f3hHzevf-0vRiuPp5fbjdXAwhj2uCZ1poJObIp-Lk31sxwJiY9KotSmLBG1IopAJzsNI7ow6zWcgI2aYNWiRPy9i53X_KPA9bmbmL1mBIsmA_VGWuYNlaZLl89kNf5UJZezhkppZK9yn2c77-sBYPbl3gD5dZx5v5c2XH398pdvjnGQfWQQoHFx_qPj4JLw6zo7vTOQQS4X3mMcfs5uHBIqeGv1u3r_9oHq38DgYqUqg</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Danowsky, Brian P</creator><creator>Thompson, Peter M</creator><creator>Farhat, Charbel</creator><creator>Lieu, Thuan</creator><creator>Harris, Chuck</creator><creator>Lechniak, Jason</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>20100701</creationdate><title>Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model</title><author>Danowsky, Brian P ; Thompson, Peter M ; Farhat, Charbel ; Lieu, Thuan ; Harris, Chuck ; Lechniak, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-c066603420bfcd868607103b6258e437f9ee6505aaeb8b22ecfd594ba0b67e853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Aerodynamics</topic><topic>Aeroelasticity</topic><topic>Aerospace engineering</topic><topic>Aircraft</topic><topic>Aircraft models</topic><topic>Clearances</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Control systems</topic><topic>Degrees of freedom</topic><topic>Design engineering</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Fighter aircraft</topic><topic>Finite element method</topic><topic>Flight control systems</topic><topic>Flight testing</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Military aircraft</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Reduction</topic><topic>Rendering</topic><topic>Saturation</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Subsonic aircraft</topic><topic>Supersonic aircraft</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danowsky, Brian P</creatorcontrib><creatorcontrib>Thompson, Peter M</creatorcontrib><creatorcontrib>Farhat, Charbel</creatorcontrib><creatorcontrib>Lieu, Thuan</creatorcontrib><creatorcontrib>Harris, Chuck</creatorcontrib><creatorcontrib>Lechniak, Jason</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danowsky, Brian P</au><au>Thompson, Peter M</au><au>Farhat, Charbel</au><au>Lieu, Thuan</au><au>Harris, Chuck</au><au>Lechniak, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model</atitle><jtitle>Journal of aircraft</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>47</volume><issue>4</issue><spage>1274</spage><epage>1282</epage><pages>1274-1282</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>Flight testing for aeroservoelastic clearance is an expensive and time consuming process. Large degree-of-freedom high-fidelity nonlinear aircraft models using computational fluid dynamics coupled with finite element models can be used for accurately predicting aeroelastic phenomena in all flight regimes including subsonic, supersonic, and transonic. With the incorporation of an active feedback control system, these high-fidelity models can be used to reduce the flight-test time needed for aeroservoelastic clearance. Accurate computational fluid dynamics/finite element models are computationally complex, rendering their runtime ill suited for adequate flight control system design. In this work, a complex, large-degree-of-freedom, transonic, inviscid computational fluid dynamics/finite element model of a fighter aircraft is fitted with a flight control system for aeroelastic oscillation reduction. A linear reduced-order model of the complete aeroelastic aircraft dynamic system is produced directly from the high-order nonlinear computational fluid dynamics/finite element model. This rapid runtime reduced-order model is used for the design of the flight control system, which includes models of the actuators and common nonlinearities in the form of rate limiting and saturation. The oscillation reduction controller is successfully demonstrated via a simulated flight test using the high-fidelity nonlinear computational fluid dynamics/finite element/flight control system model. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.47119</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2010-07, Vol.47 (4), p.1274-1282
issn 0021-8669
1533-3868
language eng
recordid cdi_proquest_miscellaneous_787067857
source Alma/SFX Local Collection
subjects Active control
Actuators
Aerodynamics
Aeroelasticity
Aerospace engineering
Aircraft
Aircraft models
Clearances
Computational fluid dynamics
Computer simulation
Constraining
Control systems
Degrees of freedom
Design engineering
Dynamical systems
Exact sciences and technology
Feedback control
Feedback control systems
Fighter aircraft
Finite element method
Flight control systems
Flight testing
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
Mathematical analysis
Mathematical models
Military aircraft
Nonlinear dynamics
Nonlinearity
Oscillations
Physics
Reduction
Rendering
Saturation
Solid mechanics
Structural and continuum mechanics
Subsonic aircraft
Supersonic aircraft
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20Feedback%20Control%20into%20a%20High-Fidelity%20Aeroservoelastic%20Fighter%20Aircraft%20Model&rft.jtitle=Journal%20of%20aircraft&rft.au=Danowsky,%20Brian%20P&rft.date=2010-07-01&rft.volume=47&rft.issue=4&rft.spage=1274&rft.epage=1282&rft.pages=1274-1282&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.47119&rft_dat=%3Cproquest_cross%3E2113350901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744454066&rft_id=info:pmid/&rfr_iscdi=true