Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model
Flight testing for aeroservoelastic clearance is an expensive and time consuming process. Large degree-of-freedom high-fidelity nonlinear aircraft models using computational fluid dynamics coupled with finite element models can be used for accurately predicting aeroelastic phenomena in all flight re...
Gespeichert in:
Veröffentlicht in: | Journal of aircraft 2010-07, Vol.47 (4), p.1274-1282 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1282 |
---|---|
container_issue | 4 |
container_start_page | 1274 |
container_title | Journal of aircraft |
container_volume | 47 |
creator | Danowsky, Brian P Thompson, Peter M Farhat, Charbel Lieu, Thuan Harris, Chuck Lechniak, Jason |
description | Flight testing for aeroservoelastic clearance is an expensive and time consuming process. Large degree-of-freedom high-fidelity nonlinear aircraft models using computational fluid dynamics coupled with finite element models can be used for accurately predicting aeroelastic phenomena in all flight regimes including subsonic, supersonic, and transonic. With the incorporation of an active feedback control system, these high-fidelity models can be used to reduce the flight-test time needed for aeroservoelastic clearance. Accurate computational fluid dynamics/finite element models are computationally complex, rendering their runtime ill suited for adequate flight control system design. In this work, a complex, large-degree-of-freedom, transonic, inviscid computational fluid dynamics/finite element model of a fighter aircraft is fitted with a flight control system for aeroelastic oscillation reduction. A linear reduced-order model of the complete aeroelastic aircraft dynamic system is produced directly from the high-order nonlinear computational fluid dynamics/finite element model. This rapid runtime reduced-order model is used for the design of the flight control system, which includes models of the actuators and common nonlinearities in the form of rate limiting and saturation. The oscillation reduction controller is successfully demonstrated via a simulated flight test using the high-fidelity nonlinear computational fluid dynamics/finite element/flight control system model. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.2514/1.47119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787067857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113350901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-c066603420bfcd868607103b6258e437f9ee6505aaeb8b22ecfd594ba0b67e853</originalsourceid><addsrcrecordid>eNpt0E1rVDEUBuAgCo5V_AtBFOni1uTmc5bD4LSFihvdGs7NPdHU9GZMMmL_vdEOFoqrLM7De94cQl5ydjYqLt_xM2k4Xz8iK66EGITV9jFZMTbywWq9fkqe1XrNGLPMmBX5crn4XPa5QIt5oTnQHeI8gf9Ot3lpJScal5Yp0Iv49duwizOm2G7pBkuuWH5mTFBb9HTXxw0L3cTiC4RGP-ROn5MnAVLFF8f3hHzevf-0vRiuPp5fbjdXAwhj2uCZ1poJObIp-Lk31sxwJiY9KotSmLBG1IopAJzsNI7ow6zWcgI2aYNWiRPy9i53X_KPA9bmbmL1mBIsmA_VGWuYNlaZLl89kNf5UJZezhkppZK9yn2c77-sBYPbl3gD5dZx5v5c2XH398pdvjnGQfWQQoHFx_qPj4JLw6zo7vTOQQS4X3mMcfs5uHBIqeGv1u3r_9oHq38DgYqUqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744454066</pqid></control><display><type>article</type><title>Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model</title><source>Alma/SFX Local Collection</source><creator>Danowsky, Brian P ; Thompson, Peter M ; Farhat, Charbel ; Lieu, Thuan ; Harris, Chuck ; Lechniak, Jason</creator><creatorcontrib>Danowsky, Brian P ; Thompson, Peter M ; Farhat, Charbel ; Lieu, Thuan ; Harris, Chuck ; Lechniak, Jason</creatorcontrib><description>Flight testing for aeroservoelastic clearance is an expensive and time consuming process. Large degree-of-freedom high-fidelity nonlinear aircraft models using computational fluid dynamics coupled with finite element models can be used for accurately predicting aeroelastic phenomena in all flight regimes including subsonic, supersonic, and transonic. With the incorporation of an active feedback control system, these high-fidelity models can be used to reduce the flight-test time needed for aeroservoelastic clearance. Accurate computational fluid dynamics/finite element models are computationally complex, rendering their runtime ill suited for adequate flight control system design. In this work, a complex, large-degree-of-freedom, transonic, inviscid computational fluid dynamics/finite element model of a fighter aircraft is fitted with a flight control system for aeroelastic oscillation reduction. A linear reduced-order model of the complete aeroelastic aircraft dynamic system is produced directly from the high-order nonlinear computational fluid dynamics/finite element model. This rapid runtime reduced-order model is used for the design of the flight control system, which includes models of the actuators and common nonlinearities in the form of rate limiting and saturation. The oscillation reduction controller is successfully demonstrated via a simulated flight test using the high-fidelity nonlinear computational fluid dynamics/finite element/flight control system model. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.47119</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Active control ; Actuators ; Aerodynamics ; Aeroelasticity ; Aerospace engineering ; Aircraft ; Aircraft models ; Clearances ; Computational fluid dynamics ; Computer simulation ; Constraining ; Control systems ; Degrees of freedom ; Design engineering ; Dynamical systems ; Exact sciences and technology ; Feedback control ; Feedback control systems ; Fighter aircraft ; Finite element method ; Flight control systems ; Flight testing ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Mathematical analysis ; Mathematical models ; Military aircraft ; Nonlinear dynamics ; Nonlinearity ; Oscillations ; Physics ; Reduction ; Rendering ; Saturation ; Solid mechanics ; Structural and continuum mechanics ; Subsonic aircraft ; Supersonic aircraft ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of aircraft, 2010-07, Vol.47 (4), p.1274-1282</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul/Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-c066603420bfcd868607103b6258e437f9ee6505aaeb8b22ecfd594ba0b67e853</citedby><cites>FETCH-LOGICAL-a377t-c066603420bfcd868607103b6258e437f9ee6505aaeb8b22ecfd594ba0b67e853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23147083$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Danowsky, Brian P</creatorcontrib><creatorcontrib>Thompson, Peter M</creatorcontrib><creatorcontrib>Farhat, Charbel</creatorcontrib><creatorcontrib>Lieu, Thuan</creatorcontrib><creatorcontrib>Harris, Chuck</creatorcontrib><creatorcontrib>Lechniak, Jason</creatorcontrib><title>Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model</title><title>Journal of aircraft</title><description>Flight testing for aeroservoelastic clearance is an expensive and time consuming process. Large degree-of-freedom high-fidelity nonlinear aircraft models using computational fluid dynamics coupled with finite element models can be used for accurately predicting aeroelastic phenomena in all flight regimes including subsonic, supersonic, and transonic. With the incorporation of an active feedback control system, these high-fidelity models can be used to reduce the flight-test time needed for aeroservoelastic clearance. Accurate computational fluid dynamics/finite element models are computationally complex, rendering their runtime ill suited for adequate flight control system design. In this work, a complex, large-degree-of-freedom, transonic, inviscid computational fluid dynamics/finite element model of a fighter aircraft is fitted with a flight control system for aeroelastic oscillation reduction. A linear reduced-order model of the complete aeroelastic aircraft dynamic system is produced directly from the high-order nonlinear computational fluid dynamics/finite element model. This rapid runtime reduced-order model is used for the design of the flight control system, which includes models of the actuators and common nonlinearities in the form of rate limiting and saturation. The oscillation reduction controller is successfully demonstrated via a simulated flight test using the high-fidelity nonlinear computational fluid dynamics/finite element/flight control system model. [PUBLICATION ABSTRACT]</description><subject>Active control</subject><subject>Actuators</subject><subject>Aerodynamics</subject><subject>Aeroelasticity</subject><subject>Aerospace engineering</subject><subject>Aircraft</subject><subject>Aircraft models</subject><subject>Clearances</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Control systems</subject><subject>Degrees of freedom</subject><subject>Design engineering</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Fighter aircraft</subject><subject>Finite element method</subject><subject>Flight control systems</subject><subject>Flight testing</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Military aircraft</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Reduction</subject><subject>Rendering</subject><subject>Saturation</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Subsonic aircraft</subject><subject>Supersonic aircraft</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0E1rVDEUBuAgCo5V_AtBFOni1uTmc5bD4LSFihvdGs7NPdHU9GZMMmL_vdEOFoqrLM7De94cQl5ydjYqLt_xM2k4Xz8iK66EGITV9jFZMTbywWq9fkqe1XrNGLPMmBX5crn4XPa5QIt5oTnQHeI8gf9Ot3lpJScal5Yp0Iv49duwizOm2G7pBkuuWH5mTFBb9HTXxw0L3cTiC4RGP-ROn5MnAVLFF8f3hHzevf-0vRiuPp5fbjdXAwhj2uCZ1poJObIp-Lk31sxwJiY9KotSmLBG1IopAJzsNI7ow6zWcgI2aYNWiRPy9i53X_KPA9bmbmL1mBIsmA_VGWuYNlaZLl89kNf5UJZezhkppZK9yn2c77-sBYPbl3gD5dZx5v5c2XH398pdvjnGQfWQQoHFx_qPj4JLw6zo7vTOQQS4X3mMcfs5uHBIqeGv1u3r_9oHq38DgYqUqg</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Danowsky, Brian P</creator><creator>Thompson, Peter M</creator><creator>Farhat, Charbel</creator><creator>Lieu, Thuan</creator><creator>Harris, Chuck</creator><creator>Lechniak, Jason</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>20100701</creationdate><title>Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model</title><author>Danowsky, Brian P ; Thompson, Peter M ; Farhat, Charbel ; Lieu, Thuan ; Harris, Chuck ; Lechniak, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-c066603420bfcd868607103b6258e437f9ee6505aaeb8b22ecfd594ba0b67e853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Aerodynamics</topic><topic>Aeroelasticity</topic><topic>Aerospace engineering</topic><topic>Aircraft</topic><topic>Aircraft models</topic><topic>Clearances</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Control systems</topic><topic>Degrees of freedom</topic><topic>Design engineering</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Fighter aircraft</topic><topic>Finite element method</topic><topic>Flight control systems</topic><topic>Flight testing</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Military aircraft</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Reduction</topic><topic>Rendering</topic><topic>Saturation</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Subsonic aircraft</topic><topic>Supersonic aircraft</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danowsky, Brian P</creatorcontrib><creatorcontrib>Thompson, Peter M</creatorcontrib><creatorcontrib>Farhat, Charbel</creatorcontrib><creatorcontrib>Lieu, Thuan</creatorcontrib><creatorcontrib>Harris, Chuck</creatorcontrib><creatorcontrib>Lechniak, Jason</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danowsky, Brian P</au><au>Thompson, Peter M</au><au>Farhat, Charbel</au><au>Lieu, Thuan</au><au>Harris, Chuck</au><au>Lechniak, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model</atitle><jtitle>Journal of aircraft</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>47</volume><issue>4</issue><spage>1274</spage><epage>1282</epage><pages>1274-1282</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>Flight testing for aeroservoelastic clearance is an expensive and time consuming process. Large degree-of-freedom high-fidelity nonlinear aircraft models using computational fluid dynamics coupled with finite element models can be used for accurately predicting aeroelastic phenomena in all flight regimes including subsonic, supersonic, and transonic. With the incorporation of an active feedback control system, these high-fidelity models can be used to reduce the flight-test time needed for aeroservoelastic clearance. Accurate computational fluid dynamics/finite element models are computationally complex, rendering their runtime ill suited for adequate flight control system design. In this work, a complex, large-degree-of-freedom, transonic, inviscid computational fluid dynamics/finite element model of a fighter aircraft is fitted with a flight control system for aeroelastic oscillation reduction. A linear reduced-order model of the complete aeroelastic aircraft dynamic system is produced directly from the high-order nonlinear computational fluid dynamics/finite element model. This rapid runtime reduced-order model is used for the design of the flight control system, which includes models of the actuators and common nonlinearities in the form of rate limiting and saturation. The oscillation reduction controller is successfully demonstrated via a simulated flight test using the high-fidelity nonlinear computational fluid dynamics/finite element/flight control system model. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.47119</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8669 |
ispartof | Journal of aircraft, 2010-07, Vol.47 (4), p.1274-1282 |
issn | 0021-8669 1533-3868 |
language | eng |
recordid | cdi_proquest_miscellaneous_787067857 |
source | Alma/SFX Local Collection |
subjects | Active control Actuators Aerodynamics Aeroelasticity Aerospace engineering Aircraft Aircraft models Clearances Computational fluid dynamics Computer simulation Constraining Control systems Degrees of freedom Design engineering Dynamical systems Exact sciences and technology Feedback control Feedback control systems Fighter aircraft Finite element method Flight control systems Flight testing Fluid dynamics Fundamental areas of phenomenology (including applications) General theory Mathematical analysis Mathematical models Military aircraft Nonlinear dynamics Nonlinearity Oscillations Physics Reduction Rendering Saturation Solid mechanics Structural and continuum mechanics Subsonic aircraft Supersonic aircraft Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Incorporation of Feedback Control into a High-Fidelity Aeroservoelastic Fighter Aircraft Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20Feedback%20Control%20into%20a%20High-Fidelity%20Aeroservoelastic%20Fighter%20Aircraft%20Model&rft.jtitle=Journal%20of%20aircraft&rft.au=Danowsky,%20Brian%20P&rft.date=2010-07-01&rft.volume=47&rft.issue=4&rft.spage=1274&rft.epage=1282&rft.pages=1274-1282&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.47119&rft_dat=%3Cproquest_cross%3E2113350901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744454066&rft_id=info:pmid/&rfr_iscdi=true |