Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate

Three experimental high manganese twinning induced plasticity (TWIP) steels were produced based on thermodynamic stacking fault energy (SFE) calculations, following the thermodynamic modeling approach originally proposed by Olson and Cohen (Metall Trans 7A (1976) 1897). At room temperature, the SFE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2010-09, Vol.58 (15), p.5129-5141
Hauptverfasser: Curtze, S., Kuokkala, V.-T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5141
container_issue 15
container_start_page 5129
container_title Acta materialia
container_volume 58
creator Curtze, S.
Kuokkala, V.-T.
description Three experimental high manganese twinning induced plasticity (TWIP) steels were produced based on thermodynamic stacking fault energy (SFE) calculations, following the thermodynamic modeling approach originally proposed by Olson and Cohen (Metall Trans 7A (1976) 1897). At room temperature, the SFE γ SFE of the three materials varied from 20.5 to 42 mJ m −2. In order to study the correlation between the SFE and the mechanical behavior of the TWIP steels, as manifested by the propensity of the material to deformation-induced phase transformations or twinning, tensile tests were performed at temperatures −50 °C ⩽ T ⩽ 80 °C using strain rates varying between 10 −3 s −1 and 1250 s −1. The mechanical behavior of TWIP steels reveals clear temperature dependence, related to the prevailing deformation/strain hardening mechanism, i.e., dislocation slip, deformation twinning or ε-martensite transformation. At high strain rates an increase in temperature due to adiabatic deformation heating also contributes to the SFE, shifting γ SFE either towards or away from the optimum value for twinning.
doi_str_mv 10.1016/j.actamat.2010.05.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787065135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645410003344</els_id><sourcerecordid>787065135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-d13b2ab5caf84b5ab907a110a4dd2787507c72df4f8c067a159931f436da6a793</originalsourceid><addsrcrecordid>eNqFkE9rGzEQxZfSQNKkHyGgS-kl60grabV7KiHpn0AgOTj0KGalUSp3LTmSbMi3r4xNrj3NMO_Nm-HXNJeMLhhl_fVqAabAGsqio3VG5YKK8UNzxgbF205I_rH2XI5tL6Q4bT7lvKKUdUrQsybe4QaDxWCQREcKhuxnJBZdTDXRx0Am_AM7H9NeX_6-fyK5IM6ZVCkXMH99eCEOtnMhGDC9vF3VlPUGE5RtQgLBVlsCH0id4EVz4mDO-PlYz5vnH9-Xt7_ah8ef97c3D63hipXWMj51MEkDbhCThGmkChijIKzt1KAkVUZ11gk3GNpXSY4jZ07w3kIPauTnzddD7ibF1y3motc-G5xnCBi3WdcM2stKpTrlwWlSzDmh05vk15DeNKN6z1ev9JGv3vPVVOrKt-59OV6AbGB2CYLx-X2547Q-KYbq-3bwVWa485h0Nn7P2_qEpmgb_X8u_QMaqJSu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787065135</pqid></control><display><type>article</type><title>Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate</title><source>Access via ScienceDirect (Elsevier)</source><creator>Curtze, S. ; Kuokkala, V.-T.</creator><creatorcontrib>Curtze, S. ; Kuokkala, V.-T.</creatorcontrib><description>Three experimental high manganese twinning induced plasticity (TWIP) steels were produced based on thermodynamic stacking fault energy (SFE) calculations, following the thermodynamic modeling approach originally proposed by Olson and Cohen (Metall Trans 7A (1976) 1897). At room temperature, the SFE γ SFE of the three materials varied from 20.5 to 42 mJ m −2. In order to study the correlation between the SFE and the mechanical behavior of the TWIP steels, as manifested by the propensity of the material to deformation-induced phase transformations or twinning, tensile tests were performed at temperatures −50 °C ⩽ T ⩽ 80 °C using strain rates varying between 10 −3 s −1 and 1250 s −1. The mechanical behavior of TWIP steels reveals clear temperature dependence, related to the prevailing deformation/strain hardening mechanism, i.e., dislocation slip, deformation twinning or ε-martensite transformation. At high strain rates an increase in temperature due to adiabatic deformation heating also contributes to the SFE, shifting γ SFE either towards or away from the optimum value for twinning.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2010.05.049</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adiabatic flow ; Applied sciences ; Austenitic steels ; Deformation ; Dislocation dynamics ; Dislocations ; Exact sciences and technology ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Stacking fault energy ; Steels ; Strain hardening ; Strain rate ; Thermodynamic modeling ; Thermodynamics ; Twinning</subject><ispartof>Acta materialia, 2010-09, Vol.58 (15), p.5129-5141</ispartof><rights>2010 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-d13b2ab5caf84b5ab907a110a4dd2787507c72df4f8c067a159931f436da6a793</citedby><cites>FETCH-LOGICAL-c371t-d13b2ab5caf84b5ab907a110a4dd2787507c72df4f8c067a159931f436da6a793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2010.05.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23050748$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Curtze, S.</creatorcontrib><creatorcontrib>Kuokkala, V.-T.</creatorcontrib><title>Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate</title><title>Acta materialia</title><description>Three experimental high manganese twinning induced plasticity (TWIP) steels were produced based on thermodynamic stacking fault energy (SFE) calculations, following the thermodynamic modeling approach originally proposed by Olson and Cohen (Metall Trans 7A (1976) 1897). At room temperature, the SFE γ SFE of the three materials varied from 20.5 to 42 mJ m −2. In order to study the correlation between the SFE and the mechanical behavior of the TWIP steels, as manifested by the propensity of the material to deformation-induced phase transformations or twinning, tensile tests were performed at temperatures −50 °C ⩽ T ⩽ 80 °C using strain rates varying between 10 −3 s −1 and 1250 s −1. The mechanical behavior of TWIP steels reveals clear temperature dependence, related to the prevailing deformation/strain hardening mechanism, i.e., dislocation slip, deformation twinning or ε-martensite transformation. At high strain rates an increase in temperature due to adiabatic deformation heating also contributes to the SFE, shifting γ SFE either towards or away from the optimum value for twinning.</description><subject>Adiabatic flow</subject><subject>Applied sciences</subject><subject>Austenitic steels</subject><subject>Deformation</subject><subject>Dislocation dynamics</subject><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Stacking fault energy</subject><subject>Steels</subject><subject>Strain hardening</subject><subject>Strain rate</subject><subject>Thermodynamic modeling</subject><subject>Thermodynamics</subject><subject>Twinning</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rGzEQxZfSQNKkHyGgS-kl60grabV7KiHpn0AgOTj0KGalUSp3LTmSbMi3r4xNrj3NMO_Nm-HXNJeMLhhl_fVqAabAGsqio3VG5YKK8UNzxgbF205I_rH2XI5tL6Q4bT7lvKKUdUrQsybe4QaDxWCQREcKhuxnJBZdTDXRx0Am_AM7H9NeX_6-fyK5IM6ZVCkXMH99eCEOtnMhGDC9vF3VlPUGE5RtQgLBVlsCH0id4EVz4mDO-PlYz5vnH9-Xt7_ah8ef97c3D63hipXWMj51MEkDbhCThGmkChijIKzt1KAkVUZ11gk3GNpXSY4jZ07w3kIPauTnzddD7ibF1y3motc-G5xnCBi3WdcM2stKpTrlwWlSzDmh05vk15DeNKN6z1ev9JGv3vPVVOrKt-59OV6AbGB2CYLx-X2547Q-KYbq-3bwVWa485h0Nn7P2_qEpmgb_X8u_QMaqJSu</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Curtze, S.</creator><creator>Kuokkala, V.-T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100901</creationdate><title>Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate</title><author>Curtze, S. ; Kuokkala, V.-T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-d13b2ab5caf84b5ab907a110a4dd2787507c72df4f8c067a159931f436da6a793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adiabatic flow</topic><topic>Applied sciences</topic><topic>Austenitic steels</topic><topic>Deformation</topic><topic>Dislocation dynamics</topic><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Stacking fault energy</topic><topic>Steels</topic><topic>Strain hardening</topic><topic>Strain rate</topic><topic>Thermodynamic modeling</topic><topic>Thermodynamics</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curtze, S.</creatorcontrib><creatorcontrib>Kuokkala, V.-T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curtze, S.</au><au>Kuokkala, V.-T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate</atitle><jtitle>Acta materialia</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>58</volume><issue>15</issue><spage>5129</spage><epage>5141</epage><pages>5129-5141</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Three experimental high manganese twinning induced plasticity (TWIP) steels were produced based on thermodynamic stacking fault energy (SFE) calculations, following the thermodynamic modeling approach originally proposed by Olson and Cohen (Metall Trans 7A (1976) 1897). At room temperature, the SFE γ SFE of the three materials varied from 20.5 to 42 mJ m −2. In order to study the correlation between the SFE and the mechanical behavior of the TWIP steels, as manifested by the propensity of the material to deformation-induced phase transformations or twinning, tensile tests were performed at temperatures −50 °C ⩽ T ⩽ 80 °C using strain rates varying between 10 −3 s −1 and 1250 s −1. The mechanical behavior of TWIP steels reveals clear temperature dependence, related to the prevailing deformation/strain hardening mechanism, i.e., dislocation slip, deformation twinning or ε-martensite transformation. At high strain rates an increase in temperature due to adiabatic deformation heating also contributes to the SFE, shifting γ SFE either towards or away from the optimum value for twinning.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2010.05.049</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2010-09, Vol.58 (15), p.5129-5141
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_787065135
source Access via ScienceDirect (Elsevier)
subjects Adiabatic flow
Applied sciences
Austenitic steels
Deformation
Dislocation dynamics
Dislocations
Exact sciences and technology
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Stacking fault energy
Steels
Strain hardening
Strain rate
Thermodynamic modeling
Thermodynamics
Twinning
title Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20of%20tensile%20deformation%20behavior%20of%20TWIP%20steels%20on%20stacking%20fault%20energy,%20temperature%20and%20strain%20rate&rft.jtitle=Acta%20materialia&rft.au=Curtze,%20S.&rft.date=2010-09-01&rft.volume=58&rft.issue=15&rft.spage=5129&rft.epage=5141&rft.pages=5129-5141&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2010.05.049&rft_dat=%3Cproquest_cross%3E787065135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787065135&rft_id=info:pmid/&rft_els_id=S1359645410003344&rfr_iscdi=true