Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics
We examined the intrinsic relation between two interdependent and interacted processes, namely, chemiosmotic energy coupling partition and redox signaling involved in mitochondrial respiration. The following aspects of research were conducted and discussed: generation sites and release sidedness of...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2010-07, Vol.1201 (1), p.84-95 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 1 |
container_start_page | 84 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1201 |
creator | Liu, Shu-Sen |
description | We examined the intrinsic relation between two interdependent and interacted processes, namely, chemiosmotic energy coupling partition and redox signaling involved in mitochondrial respiration. The following aspects of research were conducted and discussed: generation sites and release sidedness of superoxide from the Q cycle of complex III of the mitochondrial respiratory chain; the different physiological roles of PMF components, ΔΨ and ΔpH (ΔpHS), of the Q cycle in mitochondrial superoxide generating and partitioning; and direct feedback effects of Q cycle–derived O2•− on PMF energy partition through its interaction with protons in ΔpHS to form HO2•, leading to decreasing ΔpHS and ATP synthesis due to its increasing effects of basic proton leak of mitochondria. The present experimental data give new evidence for our hypothesis of reactive oxygen species cycle cooperation with Q cycle and H+ cycle in respiratory chain in keeping PMF energy partition and its equilibrium with redox signaling regulation of mitochondrial respiration. |
doi_str_mv | 10.1111/j.1749-6632.2010.05632.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787059418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3407597001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4672-a93edf10214c209781f7157fb9c9504a167774cdd43f52c1236710ebe22b9b3d3</originalsourceid><addsrcrecordid>eNqNkV9v0zAUxS0EYmXwFVAkHnhK53-J4xekrWIFqRtCDAFPV4l9w1ySuNjNaL89zjr6wAv4wb62f_dYPoeQjNE5S-NsPWdK6rwsBZ9zmk5pMZW7R2R2vHhMZpQqlVeaixPyLMY1pYxXUj0lJ5yWUhdSzsjyym29ufWDDa7uso-Z2ZsOc4vB3aHN4rjB4HfOYlYPNjO32Dsfe791JmucxwHDd0yb-Jw8aesu4ouH9ZR8vnx7s3iXrz4s3y_OV7mRpeJ5rQXallHOpOFUq4q1ihWqbbTRBZU1K5VS0lgrRVtww7goFaPYIOeNboQVp-T1QXcT_M8R4xZ6Fw12XT2gHyOoStFCS1b9mxSSJtskT-Srv8i1H8OQvgGsSC6VLE2Jqg6UCT7GgC1sguvrsAdGYUoF1jCZD5P5MKUC96nALrW-fHhgbHq0x8Y_MSTgzQH45Trc_7cwXH87_zSVSSA_CLi4xd1RoA4_oFRCFfDleglXYrX4enFxAwvxGx9bqP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554461544</pqid></control><display><type>article</type><title>Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Liu, Shu-Sen</creator><creatorcontrib>Liu, Shu-Sen</creatorcontrib><description>We examined the intrinsic relation between two interdependent and interacted processes, namely, chemiosmotic energy coupling partition and redox signaling involved in mitochondrial respiration. The following aspects of research were conducted and discussed: generation sites and release sidedness of superoxide from the Q cycle of complex III of the mitochondrial respiratory chain; the different physiological roles of PMF components, ΔΨ and ΔpH (ΔpHS), of the Q cycle in mitochondrial superoxide generating and partitioning; and direct feedback effects of Q cycle–derived O2•− on PMF energy partition through its interaction with protons in ΔpHS to form HO2•, leading to decreasing ΔpHS and ATP synthesis due to its increasing effects of basic proton leak of mitochondria. The present experimental data give new evidence for our hypothesis of reactive oxygen species cycle cooperation with Q cycle and H+ cycle in respiratory chain in keeping PMF energy partition and its equilibrium with redox signaling regulation of mitochondrial respiration.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2010.05632.x</identifier><identifier>PMID: 20649544</identifier><identifier>CODEN: ANYAA9</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; ATP ; Chains ; chemiosmotic bioenergetics ; Control ; Cooperation ; Electrons ; Energy Metabolism ; Energy of formation ; Hydrogen-Ion Concentration ; Membrane Potentials ; Mitochondria ; Mitochondria - metabolism ; mitochondrial Q cycle superoxide ; non-Ohmic dependence ; Osmosis ; Oxidation-Reduction ; Oxygen Consumption ; Partitions ; proton leak ; Proton-Motive Force ; protonmotive force partition ; Protons ; Rats ; Reactive Oxygen Species ; Respiration ; Signal Transduction ; single electron leak ; Superoxides - metabolism</subject><ispartof>Annals of the New York Academy of Sciences, 2010-07, Vol.1201 (1), p.84-95</ispartof><rights>2010 New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4672-a93edf10214c209781f7157fb9c9504a167774cdd43f52c1236710ebe22b9b3d3</citedby><cites>FETCH-LOGICAL-c4672-a93edf10214c209781f7157fb9c9504a167774cdd43f52c1236710ebe22b9b3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.2010.05632.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.2010.05632.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20649544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Shu-Sen</creatorcontrib><title>Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>We examined the intrinsic relation between two interdependent and interacted processes, namely, chemiosmotic energy coupling partition and redox signaling involved in mitochondrial respiration. The following aspects of research were conducted and discussed: generation sites and release sidedness of superoxide from the Q cycle of complex III of the mitochondrial respiratory chain; the different physiological roles of PMF components, ΔΨ and ΔpH (ΔpHS), of the Q cycle in mitochondrial superoxide generating and partitioning; and direct feedback effects of Q cycle–derived O2•− on PMF energy partition through its interaction with protons in ΔpHS to form HO2•, leading to decreasing ΔpHS and ATP synthesis due to its increasing effects of basic proton leak of mitochondria. The present experimental data give new evidence for our hypothesis of reactive oxygen species cycle cooperation with Q cycle and H+ cycle in respiratory chain in keeping PMF energy partition and its equilibrium with redox signaling regulation of mitochondrial respiration.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>ATP</subject><subject>Chains</subject><subject>chemiosmotic bioenergetics</subject><subject>Control</subject><subject>Cooperation</subject><subject>Electrons</subject><subject>Energy Metabolism</subject><subject>Energy of formation</subject><subject>Hydrogen-Ion Concentration</subject><subject>Membrane Potentials</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial Q cycle superoxide</subject><subject>non-Ohmic dependence</subject><subject>Osmosis</subject><subject>Oxidation-Reduction</subject><subject>Oxygen Consumption</subject><subject>Partitions</subject><subject>proton leak</subject><subject>Proton-Motive Force</subject><subject>protonmotive force partition</subject><subject>Protons</subject><subject>Rats</subject><subject>Reactive Oxygen Species</subject><subject>Respiration</subject><subject>Signal Transduction</subject><subject>single electron leak</subject><subject>Superoxides - metabolism</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9v0zAUxS0EYmXwFVAkHnhK53-J4xekrWIFqRtCDAFPV4l9w1ySuNjNaL89zjr6wAv4wb62f_dYPoeQjNE5S-NsPWdK6rwsBZ9zmk5pMZW7R2R2vHhMZpQqlVeaixPyLMY1pYxXUj0lJ5yWUhdSzsjyym29ufWDDa7uso-Z2ZsOc4vB3aHN4rjB4HfOYlYPNjO32Dsfe791JmucxwHDd0yb-Jw8aesu4ouH9ZR8vnx7s3iXrz4s3y_OV7mRpeJ5rQXallHOpOFUq4q1ihWqbbTRBZU1K5VS0lgrRVtww7goFaPYIOeNboQVp-T1QXcT_M8R4xZ6Fw12XT2gHyOoStFCS1b9mxSSJtskT-Srv8i1H8OQvgGsSC6VLE2Jqg6UCT7GgC1sguvrsAdGYUoF1jCZD5P5MKUC96nALrW-fHhgbHq0x8Y_MSTgzQH45Trc_7cwXH87_zSVSSA_CLi4xd1RoA4_oFRCFfDleglXYrX4enFxAwvxGx9bqP0</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Liu, Shu-Sen</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201007</creationdate><title>Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics</title><author>Liu, Shu-Sen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4672-a93edf10214c209781f7157fb9c9504a167774cdd43f52c1236710ebe22b9b3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>ATP</topic><topic>Chains</topic><topic>chemiosmotic bioenergetics</topic><topic>Control</topic><topic>Cooperation</topic><topic>Electrons</topic><topic>Energy Metabolism</topic><topic>Energy of formation</topic><topic>Hydrogen-Ion Concentration</topic><topic>Membrane Potentials</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial Q cycle superoxide</topic><topic>non-Ohmic dependence</topic><topic>Osmosis</topic><topic>Oxidation-Reduction</topic><topic>Oxygen Consumption</topic><topic>Partitions</topic><topic>proton leak</topic><topic>Proton-Motive Force</topic><topic>protonmotive force partition</topic><topic>Protons</topic><topic>Rats</topic><topic>Reactive Oxygen Species</topic><topic>Respiration</topic><topic>Signal Transduction</topic><topic>single electron leak</topic><topic>Superoxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shu-Sen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shu-Sen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2010-07</date><risdate>2010</risdate><volume>1201</volume><issue>1</issue><spage>84</spage><epage>95</epage><pages>84-95</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><coden>ANYAA9</coden><abstract>We examined the intrinsic relation between two interdependent and interacted processes, namely, chemiosmotic energy coupling partition and redox signaling involved in mitochondrial respiration. The following aspects of research were conducted and discussed: generation sites and release sidedness of superoxide from the Q cycle of complex III of the mitochondrial respiratory chain; the different physiological roles of PMF components, ΔΨ and ΔpH (ΔpHS), of the Q cycle in mitochondrial superoxide generating and partitioning; and direct feedback effects of Q cycle–derived O2•− on PMF energy partition through its interaction with protons in ΔpHS to form HO2•, leading to decreasing ΔpHS and ATP synthesis due to its increasing effects of basic proton leak of mitochondria. The present experimental data give new evidence for our hypothesis of reactive oxygen species cycle cooperation with Q cycle and H+ cycle in respiratory chain in keeping PMF energy partition and its equilibrium with redox signaling regulation of mitochondrial respiration.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>20649544</pmid><doi>10.1111/j.1749-6632.2010.05632.x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2010-07, Vol.1201 (1), p.84-95 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_proquest_miscellaneous_787059418 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Adenosine Triphosphate - metabolism Animals ATP Chains chemiosmotic bioenergetics Control Cooperation Electrons Energy Metabolism Energy of formation Hydrogen-Ion Concentration Membrane Potentials Mitochondria Mitochondria - metabolism mitochondrial Q cycle superoxide non-Ohmic dependence Osmosis Oxidation-Reduction Oxygen Consumption Partitions proton leak Proton-Motive Force protonmotive force partition Protons Rats Reactive Oxygen Species Respiration Signal Transduction single electron leak Superoxides - metabolism |
title | Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Q%20cycle-derived%20superoxide%20and%20chemiosmotic%20bioenergetics&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Liu,%20Shu-Sen&rft.date=2010-07&rft.volume=1201&rft.issue=1&rft.spage=84&rft.epage=95&rft.pages=84-95&rft.issn=0077-8923&rft.eissn=1749-6632&rft.coden=ANYAA9&rft_id=info:doi/10.1111/j.1749-6632.2010.05632.x&rft_dat=%3Cproquest_cross%3E3407597001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554461544&rft_id=info:pmid/20649544&rfr_iscdi=true |