Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics

We examined the intrinsic relation between two interdependent and interacted processes, namely, chemiosmotic energy coupling partition and redox signaling involved in mitochondrial respiration. The following aspects of research were conducted and discussed: generation sites and release sidedness of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2010-07, Vol.1201 (1), p.84-95
1. Verfasser: Liu, Shu-Sen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 84
container_title Annals of the New York Academy of Sciences
container_volume 1201
creator Liu, Shu-Sen
description We examined the intrinsic relation between two interdependent and interacted processes, namely, chemiosmotic energy coupling partition and redox signaling involved in mitochondrial respiration. The following aspects of research were conducted and discussed: generation sites and release sidedness of superoxide from the Q cycle of complex III of the mitochondrial respiratory chain; the different physiological roles of PMF components, ΔΨ and ΔpH (ΔpHS), of the Q cycle in mitochondrial superoxide generating and partitioning; and direct feedback effects of Q cycle–derived O2•− on PMF energy partition through its interaction with protons in ΔpHS to form HO2•, leading to decreasing ΔpHS and ATP synthesis due to its increasing effects of basic proton leak of mitochondria. The present experimental data give new evidence for our hypothesis of reactive oxygen species cycle cooperation with Q cycle and H+ cycle in respiratory chain in keeping PMF energy partition and its equilibrium with redox signaling regulation of mitochondrial respiration.
doi_str_mv 10.1111/j.1749-6632.2010.05632.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787059418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3407597001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4672-a93edf10214c209781f7157fb9c9504a167774cdd43f52c1236710ebe22b9b3d3</originalsourceid><addsrcrecordid>eNqNkV9v0zAUxS0EYmXwFVAkHnhK53-J4xekrWIFqRtCDAFPV4l9w1ySuNjNaL89zjr6wAv4wb62f_dYPoeQjNE5S-NsPWdK6rwsBZ9zmk5pMZW7R2R2vHhMZpQqlVeaixPyLMY1pYxXUj0lJ5yWUhdSzsjyym29ufWDDa7uso-Z2ZsOc4vB3aHN4rjB4HfOYlYPNjO32Dsfe791JmucxwHDd0yb-Jw8aesu4ouH9ZR8vnx7s3iXrz4s3y_OV7mRpeJ5rQXallHOpOFUq4q1ihWqbbTRBZU1K5VS0lgrRVtww7goFaPYIOeNboQVp-T1QXcT_M8R4xZ6Fw12XT2gHyOoStFCS1b9mxSSJtskT-Srv8i1H8OQvgGsSC6VLE2Jqg6UCT7GgC1sguvrsAdGYUoF1jCZD5P5MKUC96nALrW-fHhgbHq0x8Y_MSTgzQH45Trc_7cwXH87_zSVSSA_CLi4xd1RoA4_oFRCFfDleglXYrX4enFxAwvxGx9bqP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554461544</pqid></control><display><type>article</type><title>Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Liu, Shu-Sen</creator><creatorcontrib>Liu, Shu-Sen</creatorcontrib><description>We examined the intrinsic relation between two interdependent and interacted processes, namely, chemiosmotic energy coupling partition and redox signaling involved in mitochondrial respiration. The following aspects of research were conducted and discussed: generation sites and release sidedness of superoxide from the Q cycle of complex III of the mitochondrial respiratory chain; the different physiological roles of PMF components, ΔΨ and ΔpH (ΔpHS), of the Q cycle in mitochondrial superoxide generating and partitioning; and direct feedback effects of Q cycle–derived O2•− on PMF energy partition through its interaction with protons in ΔpHS to form HO2•, leading to decreasing ΔpHS and ATP synthesis due to its increasing effects of basic proton leak of mitochondria. The present experimental data give new evidence for our hypothesis of reactive oxygen species cycle cooperation with Q cycle and H+ cycle in respiratory chain in keeping PMF energy partition and its equilibrium with redox signaling regulation of mitochondrial respiration.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2010.05632.x</identifier><identifier>PMID: 20649544</identifier><identifier>CODEN: ANYAA9</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; ATP ; Chains ; chemiosmotic bioenergetics ; Control ; Cooperation ; Electrons ; Energy Metabolism ; Energy of formation ; Hydrogen-Ion Concentration ; Membrane Potentials ; Mitochondria ; Mitochondria - metabolism ; mitochondrial Q cycle superoxide ; non-Ohmic dependence ; Osmosis ; Oxidation-Reduction ; Oxygen Consumption ; Partitions ; proton leak ; Proton-Motive Force ; protonmotive force partition ; Protons ; Rats ; Reactive Oxygen Species ; Respiration ; Signal Transduction ; single electron leak ; Superoxides - metabolism</subject><ispartof>Annals of the New York Academy of Sciences, 2010-07, Vol.1201 (1), p.84-95</ispartof><rights>2010 New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4672-a93edf10214c209781f7157fb9c9504a167774cdd43f52c1236710ebe22b9b3d3</citedby><cites>FETCH-LOGICAL-c4672-a93edf10214c209781f7157fb9c9504a167774cdd43f52c1236710ebe22b9b3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.2010.05632.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.2010.05632.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20649544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Shu-Sen</creatorcontrib><title>Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>We examined the intrinsic relation between two interdependent and interacted processes, namely, chemiosmotic energy coupling partition and redox signaling involved in mitochondrial respiration. The following aspects of research were conducted and discussed: generation sites and release sidedness of superoxide from the Q cycle of complex III of the mitochondrial respiratory chain; the different physiological roles of PMF components, ΔΨ and ΔpH (ΔpHS), of the Q cycle in mitochondrial superoxide generating and partitioning; and direct feedback effects of Q cycle–derived O2•− on PMF energy partition through its interaction with protons in ΔpHS to form HO2•, leading to decreasing ΔpHS and ATP synthesis due to its increasing effects of basic proton leak of mitochondria. The present experimental data give new evidence for our hypothesis of reactive oxygen species cycle cooperation with Q cycle and H+ cycle in respiratory chain in keeping PMF energy partition and its equilibrium with redox signaling regulation of mitochondrial respiration.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>ATP</subject><subject>Chains</subject><subject>chemiosmotic bioenergetics</subject><subject>Control</subject><subject>Cooperation</subject><subject>Electrons</subject><subject>Energy Metabolism</subject><subject>Energy of formation</subject><subject>Hydrogen-Ion Concentration</subject><subject>Membrane Potentials</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial Q cycle superoxide</subject><subject>non-Ohmic dependence</subject><subject>Osmosis</subject><subject>Oxidation-Reduction</subject><subject>Oxygen Consumption</subject><subject>Partitions</subject><subject>proton leak</subject><subject>Proton-Motive Force</subject><subject>protonmotive force partition</subject><subject>Protons</subject><subject>Rats</subject><subject>Reactive Oxygen Species</subject><subject>Respiration</subject><subject>Signal Transduction</subject><subject>single electron leak</subject><subject>Superoxides - metabolism</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9v0zAUxS0EYmXwFVAkHnhK53-J4xekrWIFqRtCDAFPV4l9w1ySuNjNaL89zjr6wAv4wb62f_dYPoeQjNE5S-NsPWdK6rwsBZ9zmk5pMZW7R2R2vHhMZpQqlVeaixPyLMY1pYxXUj0lJ5yWUhdSzsjyym29ufWDDa7uso-Z2ZsOc4vB3aHN4rjB4HfOYlYPNjO32Dsfe791JmucxwHDd0yb-Jw8aesu4ouH9ZR8vnx7s3iXrz4s3y_OV7mRpeJ5rQXallHOpOFUq4q1ihWqbbTRBZU1K5VS0lgrRVtww7goFaPYIOeNboQVp-T1QXcT_M8R4xZ6Fw12XT2gHyOoStFCS1b9mxSSJtskT-Srv8i1H8OQvgGsSC6VLE2Jqg6UCT7GgC1sguvrsAdGYUoF1jCZD5P5MKUC96nALrW-fHhgbHq0x8Y_MSTgzQH45Trc_7cwXH87_zSVSSA_CLi4xd1RoA4_oFRCFfDleglXYrX4enFxAwvxGx9bqP0</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Liu, Shu-Sen</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201007</creationdate><title>Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics</title><author>Liu, Shu-Sen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4672-a93edf10214c209781f7157fb9c9504a167774cdd43f52c1236710ebe22b9b3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>ATP</topic><topic>Chains</topic><topic>chemiosmotic bioenergetics</topic><topic>Control</topic><topic>Cooperation</topic><topic>Electrons</topic><topic>Energy Metabolism</topic><topic>Energy of formation</topic><topic>Hydrogen-Ion Concentration</topic><topic>Membrane Potentials</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial Q cycle superoxide</topic><topic>non-Ohmic dependence</topic><topic>Osmosis</topic><topic>Oxidation-Reduction</topic><topic>Oxygen Consumption</topic><topic>Partitions</topic><topic>proton leak</topic><topic>Proton-Motive Force</topic><topic>protonmotive force partition</topic><topic>Protons</topic><topic>Rats</topic><topic>Reactive Oxygen Species</topic><topic>Respiration</topic><topic>Signal Transduction</topic><topic>single electron leak</topic><topic>Superoxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shu-Sen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shu-Sen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2010-07</date><risdate>2010</risdate><volume>1201</volume><issue>1</issue><spage>84</spage><epage>95</epage><pages>84-95</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><coden>ANYAA9</coden><abstract>We examined the intrinsic relation between two interdependent and interacted processes, namely, chemiosmotic energy coupling partition and redox signaling involved in mitochondrial respiration. The following aspects of research were conducted and discussed: generation sites and release sidedness of superoxide from the Q cycle of complex III of the mitochondrial respiratory chain; the different physiological roles of PMF components, ΔΨ and ΔpH (ΔpHS), of the Q cycle in mitochondrial superoxide generating and partitioning; and direct feedback effects of Q cycle–derived O2•− on PMF energy partition through its interaction with protons in ΔpHS to form HO2•, leading to decreasing ΔpHS and ATP synthesis due to its increasing effects of basic proton leak of mitochondria. The present experimental data give new evidence for our hypothesis of reactive oxygen species cycle cooperation with Q cycle and H+ cycle in respiratory chain in keeping PMF energy partition and its equilibrium with redox signaling regulation of mitochondrial respiration.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>20649544</pmid><doi>10.1111/j.1749-6632.2010.05632.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2010-07, Vol.1201 (1), p.84-95
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_787059418
source MEDLINE; Access via Wiley Online Library
subjects Adenosine Triphosphate - metabolism
Animals
ATP
Chains
chemiosmotic bioenergetics
Control
Cooperation
Electrons
Energy Metabolism
Energy of formation
Hydrogen-Ion Concentration
Membrane Potentials
Mitochondria
Mitochondria - metabolism
mitochondrial Q cycle superoxide
non-Ohmic dependence
Osmosis
Oxidation-Reduction
Oxygen Consumption
Partitions
proton leak
Proton-Motive Force
protonmotive force partition
Protons
Rats
Reactive Oxygen Species
Respiration
Signal Transduction
single electron leak
Superoxides - metabolism
title Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Q%20cycle-derived%20superoxide%20and%20chemiosmotic%20bioenergetics&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Liu,%20Shu-Sen&rft.date=2010-07&rft.volume=1201&rft.issue=1&rft.spage=84&rft.epage=95&rft.pages=84-95&rft.issn=0077-8923&rft.eissn=1749-6632&rft.coden=ANYAA9&rft_id=info:doi/10.1111/j.1749-6632.2010.05632.x&rft_dat=%3Cproquest_cross%3E3407597001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554461544&rft_id=info:pmid/20649544&rfr_iscdi=true