First-principles study of high pressure structure phase transition and elastic properties of titanium

We present a study of the structural phase transition and elastic properties of titanium (Ti) by using the projector augmented wave (PAW) within the Perdew–Burke–Ernzerhof (PBE) form of generalized-gradient approximation (GGA). The calculated phase transition ω →  γ at ca. 116.5 GPa, which agrees we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state sciences 2010-08, Vol.12 (8), p.1473-1479
Hauptverfasser: Hao, YanJun, Zhu, Jun, Zhang, Lin, Qu, JianYing, Ren, HaiSheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1479
container_issue 8
container_start_page 1473
container_title Solid state sciences
container_volume 12
creator Hao, YanJun
Zhu, Jun
Zhang, Lin
Qu, JianYing
Ren, HaiSheng
description We present a study of the structural phase transition and elastic properties of titanium (Ti) by using the projector augmented wave (PAW) within the Perdew–Burke–Ernzerhof (PBE) form of generalized-gradient approximation (GGA). The calculated phase transition ω →  γ at ca. 116.5 GPa, which agrees well with the experimentally observed transition pressure of 116.0 ± 4.0 GPa. However, other theoretical calculations are far from experimental value. We also find that the δ phase is not stable in the whole pressure range considered and phase transition from γ to β phase occurs at 162.4 GPa. This conclusion is in accordance with those of Joshi et al. and Vermal et al., but in disagreement with the experimental results of Vohra et al. and Akahama et al. Especially, the elastic properties of ω-Ti under high pressure are studied for the first time. We note that the compressional and shear wave velocities as well as the bulk B and shear moduli G increase monotonically with increasing pressure. By analyzing R G / B , the brittle–ductile behavior of Ti is assessed. Polycrystalline elastic properties are also obtained successfully for a complete description of elastic properties. Binding interaction of water soluble cobalt (II) complex containing Schiff base ligand, SF, with calf thymus DNA (CT-DNA) has been investigated and the result were compared with the SF. [Display omitted]
doi_str_mv 10.1016/j.solidstatesciences.2010.06.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787057467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1293255810002499</els_id><sourcerecordid>787057467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-7114bd6a90b04b110a949561bf691d245fa08249c0fe98003c3ab6b6e22a25c63</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoso-PkfehG9dJ2kadreFPETwYueQ5pO3Vm6bc2kgv_eLLt48eLpHZKXZ5InSS4FLAQIfbVa8NhTy8EGZEc4OOSFhHgNehFjLzkSVZlnOVTFfpxlnWeyKKrD5Jh5BQBal-oowXvyHLLJ0-Bo6pFTDnP7nY5duqSPZTp5ZJ49xmM_u7CZpqVlTIO3A1OgcUjt0KbYWw7kYn-c0AeKoIgIFOxA8_o0Oehsz3i2y5Pk_f7u7fYxe3l9eLq9ecmcAhWyUgjVtNrW0IBqhABbq7rQoul0LVqpis5CJVXtoMO6AshdbhvdaJTSysLp_CS52HLjMz5n5GDWxA773g44zmzKqoSiVLqMzett0_mR2WNnooK19d9GgNkINivzV7DZCDagTYyION8ts-xs30UhjviXI3MhSlEXsfe87WH8-RehNztcSx5dMO1I_1_6A75ln9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787057467</pqid></control><display><type>article</type><title>First-principles study of high pressure structure phase transition and elastic properties of titanium</title><source>Elsevier ScienceDirect Journals</source><creator>Hao, YanJun ; Zhu, Jun ; Zhang, Lin ; Qu, JianYing ; Ren, HaiSheng</creator><creatorcontrib>Hao, YanJun ; Zhu, Jun ; Zhang, Lin ; Qu, JianYing ; Ren, HaiSheng</creatorcontrib><description>We present a study of the structural phase transition and elastic properties of titanium (Ti) by using the projector augmented wave (PAW) within the Perdew–Burke–Ernzerhof (PBE) form of generalized-gradient approximation (GGA). The calculated phase transition ω →  γ at ca. 116.5 GPa, which agrees well with the experimentally observed transition pressure of 116.0 ± 4.0 GPa. However, other theoretical calculations are far from experimental value. We also find that the δ phase is not stable in the whole pressure range considered and phase transition from γ to β phase occurs at 162.4 GPa. This conclusion is in accordance with those of Joshi et al. and Vermal et al., but in disagreement with the experimental results of Vohra et al. and Akahama et al. Especially, the elastic properties of ω-Ti under high pressure are studied for the first time. We note that the compressional and shear wave velocities as well as the bulk B and shear moduli G increase monotonically with increasing pressure. By analyzing R G / B , the brittle–ductile behavior of Ti is assessed. Polycrystalline elastic properties are also obtained successfully for a complete description of elastic properties. Binding interaction of water soluble cobalt (II) complex containing Schiff base ligand, SF, with calf thymus DNA (CT-DNA) has been investigated and the result were compared with the SF. [Display omitted]</description><identifier>ISSN: 1293-2558</identifier><identifier>EISSN: 1873-3085</identifier><identifier>DOI: 10.1016/j.solidstatesciences.2010.06.010</identifier><language>eng</language><publisher>Issy-les-Moulineaux: Elsevier Masson SAS</publisher><subject>Approximation ; Binding ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Elastic constants ; Elastic properties ; Elasticity, elastic constants ; Electron states ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; First-principles study ; Ligands ; Mathematical analysis ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of nanoscale materials ; Mechanical properties of solids ; Methods of electronic structure calculations ; Phase transformations ; Phase transition ; Physics ; Schiff bases ; Sound waves ; Specific phase transitions ; Structural transitions in nanoscale materials ; Titanium</subject><ispartof>Solid state sciences, 2010-08, Vol.12 (8), p.1473-1479</ispartof><rights>2010 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-7114bd6a90b04b110a949561bf691d245fa08249c0fe98003c3ab6b6e22a25c63</citedby><cites>FETCH-LOGICAL-c404t-7114bd6a90b04b110a949561bf691d245fa08249c0fe98003c3ab6b6e22a25c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1293255810002499$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23117195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, YanJun</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Qu, JianYing</creatorcontrib><creatorcontrib>Ren, HaiSheng</creatorcontrib><title>First-principles study of high pressure structure phase transition and elastic properties of titanium</title><title>Solid state sciences</title><description>We present a study of the structural phase transition and elastic properties of titanium (Ti) by using the projector augmented wave (PAW) within the Perdew–Burke–Ernzerhof (PBE) form of generalized-gradient approximation (GGA). The calculated phase transition ω →  γ at ca. 116.5 GPa, which agrees well with the experimentally observed transition pressure of 116.0 ± 4.0 GPa. However, other theoretical calculations are far from experimental value. We also find that the δ phase is not stable in the whole pressure range considered and phase transition from γ to β phase occurs at 162.4 GPa. This conclusion is in accordance with those of Joshi et al. and Vermal et al., but in disagreement with the experimental results of Vohra et al. and Akahama et al. Especially, the elastic properties of ω-Ti under high pressure are studied for the first time. We note that the compressional and shear wave velocities as well as the bulk B and shear moduli G increase monotonically with increasing pressure. By analyzing R G / B , the brittle–ductile behavior of Ti is assessed. Polycrystalline elastic properties are also obtained successfully for a complete description of elastic properties. Binding interaction of water soluble cobalt (II) complex containing Schiff base ligand, SF, with calf thymus DNA (CT-DNA) has been investigated and the result were compared with the SF. [Display omitted]</description><subject>Approximation</subject><subject>Binding</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Elastic constants</subject><subject>Elastic properties</subject><subject>Elasticity, elastic constants</subject><subject>Electron states</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>First-principles study</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Mechanical properties of solids</subject><subject>Methods of electronic structure calculations</subject><subject>Phase transformations</subject><subject>Phase transition</subject><subject>Physics</subject><subject>Schiff bases</subject><subject>Sound waves</subject><subject>Specific phase transitions</subject><subject>Structural transitions in nanoscale materials</subject><subject>Titanium</subject><issn>1293-2558</issn><issn>1873-3085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoso-PkfehG9dJ2kadreFPETwYueQ5pO3Vm6bc2kgv_eLLt48eLpHZKXZ5InSS4FLAQIfbVa8NhTy8EGZEc4OOSFhHgNehFjLzkSVZlnOVTFfpxlnWeyKKrD5Jh5BQBal-oowXvyHLLJ0-Bo6pFTDnP7nY5duqSPZTp5ZJ49xmM_u7CZpqVlTIO3A1OgcUjt0KbYWw7kYn-c0AeKoIgIFOxA8_o0Oehsz3i2y5Pk_f7u7fYxe3l9eLq9ecmcAhWyUgjVtNrW0IBqhABbq7rQoul0LVqpis5CJVXtoMO6AshdbhvdaJTSysLp_CS52HLjMz5n5GDWxA773g44zmzKqoSiVLqMzett0_mR2WNnooK19d9GgNkINivzV7DZCDagTYyION8ts-xs30UhjviXI3MhSlEXsfe87WH8-RehNztcSx5dMO1I_1_6A75ln9o</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Hao, YanJun</creator><creator>Zhu, Jun</creator><creator>Zhang, Lin</creator><creator>Qu, JianYing</creator><creator>Ren, HaiSheng</creator><general>Elsevier Masson SAS</general><general>Elsevier Masson</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100801</creationdate><title>First-principles study of high pressure structure phase transition and elastic properties of titanium</title><author>Hao, YanJun ; Zhu, Jun ; Zhang, Lin ; Qu, JianYing ; Ren, HaiSheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-7114bd6a90b04b110a949561bf691d245fa08249c0fe98003c3ab6b6e22a25c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Binding</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Elastic constants</topic><topic>Elastic properties</topic><topic>Elasticity, elastic constants</topic><topic>Electron states</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>First-principles study</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Mechanical properties of solids</topic><topic>Methods of electronic structure calculations</topic><topic>Phase transformations</topic><topic>Phase transition</topic><topic>Physics</topic><topic>Schiff bases</topic><topic>Sound waves</topic><topic>Specific phase transitions</topic><topic>Structural transitions in nanoscale materials</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, YanJun</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Qu, JianYing</creatorcontrib><creatorcontrib>Ren, HaiSheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, YanJun</au><au>Zhu, Jun</au><au>Zhang, Lin</au><au>Qu, JianYing</au><au>Ren, HaiSheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles study of high pressure structure phase transition and elastic properties of titanium</atitle><jtitle>Solid state sciences</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>12</volume><issue>8</issue><spage>1473</spage><epage>1479</epage><pages>1473-1479</pages><issn>1293-2558</issn><eissn>1873-3085</eissn><abstract>We present a study of the structural phase transition and elastic properties of titanium (Ti) by using the projector augmented wave (PAW) within the Perdew–Burke–Ernzerhof (PBE) form of generalized-gradient approximation (GGA). The calculated phase transition ω →  γ at ca. 116.5 GPa, which agrees well with the experimentally observed transition pressure of 116.0 ± 4.0 GPa. However, other theoretical calculations are far from experimental value. We also find that the δ phase is not stable in the whole pressure range considered and phase transition from γ to β phase occurs at 162.4 GPa. This conclusion is in accordance with those of Joshi et al. and Vermal et al., but in disagreement with the experimental results of Vohra et al. and Akahama et al. Especially, the elastic properties of ω-Ti under high pressure are studied for the first time. We note that the compressional and shear wave velocities as well as the bulk B and shear moduli G increase monotonically with increasing pressure. By analyzing R G / B , the brittle–ductile behavior of Ti is assessed. Polycrystalline elastic properties are also obtained successfully for a complete description of elastic properties. Binding interaction of water soluble cobalt (II) complex containing Schiff base ligand, SF, with calf thymus DNA (CT-DNA) has been investigated and the result were compared with the SF. [Display omitted]</abstract><cop>Issy-les-Moulineaux</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.solidstatesciences.2010.06.010</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1293-2558
ispartof Solid state sciences, 2010-08, Vol.12 (8), p.1473-1479
issn 1293-2558
1873-3085
language eng
recordid cdi_proquest_miscellaneous_787057467
source Elsevier ScienceDirect Journals
subjects Approximation
Binding
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Elastic constants
Elastic properties
Elasticity, elastic constants
Electron states
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
First-principles study
Ligands
Mathematical analysis
Mechanical and acoustical properties of condensed matter
Mechanical properties of nanoscale materials
Mechanical properties of solids
Methods of electronic structure calculations
Phase transformations
Phase transition
Physics
Schiff bases
Sound waves
Specific phase transitions
Structural transitions in nanoscale materials
Titanium
title First-principles study of high pressure structure phase transition and elastic properties of titanium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20study%20of%20high%20pressure%20structure%20phase%20transition%20and%20elastic%20properties%20of%20titanium&rft.jtitle=Solid%20state%20sciences&rft.au=Hao,%20YanJun&rft.date=2010-08-01&rft.volume=12&rft.issue=8&rft.spage=1473&rft.epage=1479&rft.pages=1473-1479&rft.issn=1293-2558&rft.eissn=1873-3085&rft_id=info:doi/10.1016/j.solidstatesciences.2010.06.010&rft_dat=%3Cproquest_cross%3E787057467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787057467&rft_id=info:pmid/&rft_els_id=S1293255810002499&rfr_iscdi=true