Relativistic runaway breakdown in low-frequency radio
The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is chara...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. B. Solid Earth 2010-01, Vol.115 (A1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | A1 |
container_start_page | |
container_title | Journal of Geophysical Research. B. Solid Earth |
container_volume | 115 |
creator | Füllekrug, Martin Roussel-Dupré, Robert Symbalisty, Eugene M. D. Chanrion, Olivier Odzimek, Anna van der Velde, Oscar Neubert, Torsten |
description | The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low‐frequency radio range from ∼10 to 300 kHz at a distance of ∼800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low‐frequency radio observations of sprite‐producing lightning discharges at a distance of ∼550 km. The measured broadband pulses occur ∼4–9 ms after the sprite‐producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ∼50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ∼4.5 ms and ∼3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low‐frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory. |
doi_str_mv | 10.1029/2009JA014468 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787056355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36426642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-b71e704f7e6e03a41b2184a87dca1cf0589fbd4790435f44bb1914c4376102163</originalsourceid><addsrcrecordid>eNqF0VtLwzAUB_AgCo65Nz9A8UFfrOZycunjGG5zisrw8hjSNoVuXTuTzblvb0ZFxIcZCIHD7-Tw5yB0SvAVwTS5phgnkz4mAEIdoA4lXMSUYnqIOqGoYkypPEY972c4HOACMOkgPrWVWZUfpV-VWeTWtdmYbZQ6a-Z5s6mjso6qZhMXzr6vbZ1tI2fysjlBR4WpvO19v130Mrx5Hozj-8fR7aB_H2cgBY9TSazEUEgrLGYGSEqJAqNknhmSFZirpEhzkAkGxguANCUJgQyYFCESEayLLtp_l64J8_1KL0qf2aoytW3WXkslMReM8yDP90omgIpw_4WUAFdhfIBnf-CsWbs6xNVKYEm4ZCygyxZlrvHe2UIvXbkwbqsJ1ru16N9rCZy1fFNWdrvX6slo2g8FtcsWt11hSfbzp8u4uRaSSa7fHkZ6OLobP4kB6Ff2BamKmeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860715733</pqid></control><display><type>article</type><title>Relativistic runaway breakdown in low-frequency radio</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Füllekrug, Martin ; Roussel-Dupré, Robert ; Symbalisty, Eugene M. D. ; Chanrion, Olivier ; Odzimek, Anna ; van der Velde, Oscar ; Neubert, Torsten</creator><creatorcontrib>Füllekrug, Martin ; Roussel-Dupré, Robert ; Symbalisty, Eugene M. D. ; Chanrion, Olivier ; Odzimek, Anna ; van der Velde, Oscar ; Neubert, Torsten</creatorcontrib><description>The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low‐frequency radio range from ∼10 to 300 kHz at a distance of ∼800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low‐frequency radio observations of sprite‐producing lightning discharges at a distance of ∼550 km. The measured broadband pulses occur ∼4–9 ms after the sprite‐producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ∼50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ∼4.5 ms and ∼3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low‐frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2009JA014468</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmosphere ; Atmospheric sciences ; Electric noise ; Electromagnetic radiation ; Lightning ; low-frequency radio ; Radio ; Remote sensing ; runaway breakdown ; sprites</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2010-01, Vol.115 (A1), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-b71e704f7e6e03a41b2184a87dca1cf0589fbd4790435f44bb1914c4376102163</citedby><cites>FETCH-LOGICAL-c4765-b71e704f7e6e03a41b2184a87dca1cf0589fbd4790435f44bb1914c4376102163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JA014468$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JA014468$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Füllekrug, Martin</creatorcontrib><creatorcontrib>Roussel-Dupré, Robert</creatorcontrib><creatorcontrib>Symbalisty, Eugene M. D.</creatorcontrib><creatorcontrib>Chanrion, Olivier</creatorcontrib><creatorcontrib>Odzimek, Anna</creatorcontrib><creatorcontrib>van der Velde, Oscar</creatorcontrib><creatorcontrib>Neubert, Torsten</creatorcontrib><title>Relativistic runaway breakdown in low-frequency radio</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low‐frequency radio range from ∼10 to 300 kHz at a distance of ∼800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low‐frequency radio observations of sprite‐producing lightning discharges at a distance of ∼550 km. The measured broadband pulses occur ∼4–9 ms after the sprite‐producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ∼50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ∼4.5 ms and ∼3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low‐frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.</description><subject>Atmosphere</subject><subject>Atmospheric sciences</subject><subject>Electric noise</subject><subject>Electromagnetic radiation</subject><subject>Lightning</subject><subject>low-frequency radio</subject><subject>Radio</subject><subject>Remote sensing</subject><subject>runaway breakdown</subject><subject>sprites</subject><issn>0148-0227</issn><issn>2169-9380</issn><issn>2156-2202</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0VtLwzAUB_AgCo65Nz9A8UFfrOZycunjGG5zisrw8hjSNoVuXTuTzblvb0ZFxIcZCIHD7-Tw5yB0SvAVwTS5phgnkz4mAEIdoA4lXMSUYnqIOqGoYkypPEY972c4HOACMOkgPrWVWZUfpV-VWeTWtdmYbZQ6a-Z5s6mjso6qZhMXzr6vbZ1tI2fysjlBR4WpvO19v130Mrx5Hozj-8fR7aB_H2cgBY9TSazEUEgrLGYGSEqJAqNknhmSFZirpEhzkAkGxguANCUJgQyYFCESEayLLtp_l64J8_1KL0qf2aoytW3WXkslMReM8yDP90omgIpw_4WUAFdhfIBnf-CsWbs6xNVKYEm4ZCygyxZlrvHe2UIvXbkwbqsJ1ru16N9rCZy1fFNWdrvX6slo2g8FtcsWt11hSfbzp8u4uRaSSa7fHkZ6OLobP4kB6Ff2BamKmeY</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Füllekrug, Martin</creator><creator>Roussel-Dupré, Robert</creator><creator>Symbalisty, Eugene M. D.</creator><creator>Chanrion, Olivier</creator><creator>Odzimek, Anna</creator><creator>van der Velde, Oscar</creator><creator>Neubert, Torsten</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7SM</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201001</creationdate><title>Relativistic runaway breakdown in low-frequency radio</title><author>Füllekrug, Martin ; Roussel-Dupré, Robert ; Symbalisty, Eugene M. D. ; Chanrion, Olivier ; Odzimek, Anna ; van der Velde, Oscar ; Neubert, Torsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-b71e704f7e6e03a41b2184a87dca1cf0589fbd4790435f44bb1914c4376102163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atmosphere</topic><topic>Atmospheric sciences</topic><topic>Electric noise</topic><topic>Electromagnetic radiation</topic><topic>Lightning</topic><topic>low-frequency radio</topic><topic>Radio</topic><topic>Remote sensing</topic><topic>runaway breakdown</topic><topic>sprites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Füllekrug, Martin</creatorcontrib><creatorcontrib>Roussel-Dupré, Robert</creatorcontrib><creatorcontrib>Symbalisty, Eugene M. D.</creatorcontrib><creatorcontrib>Chanrion, Olivier</creatorcontrib><creatorcontrib>Odzimek, Anna</creatorcontrib><creatorcontrib>van der Velde, Oscar</creatorcontrib><creatorcontrib>Neubert, Torsten</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Füllekrug, Martin</au><au>Roussel-Dupré, Robert</au><au>Symbalisty, Eugene M. D.</au><au>Chanrion, Olivier</au><au>Odzimek, Anna</au><au>van der Velde, Oscar</au><au>Neubert, Torsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relativistic runaway breakdown in low-frequency radio</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-01</date><risdate>2010</risdate><volume>115</volume><issue>A1</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9380</issn><eissn>2156-2202</eissn><eissn>2169-9402</eissn><abstract>The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low‐frequency radio range from ∼10 to 300 kHz at a distance of ∼800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low‐frequency radio observations of sprite‐producing lightning discharges at a distance of ∼550 km. The measured broadband pulses occur ∼4–9 ms after the sprite‐producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ∼50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ∼4.5 ms and ∼3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low‐frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JA014468</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research. B. Solid Earth, 2010-01, Vol.115 (A1), p.n/a |
issn | 0148-0227 2169-9380 2156-2202 2169-9402 |
language | eng |
recordid | cdi_proquest_miscellaneous_787056355 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Atmosphere Atmospheric sciences Electric noise Electromagnetic radiation Lightning low-frequency radio Radio Remote sensing runaway breakdown sprites |
title | Relativistic runaway breakdown in low-frequency radio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relativistic%20runaway%20breakdown%20in%20low-frequency%20radio&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=F%C3%BCllekrug,%20Martin&rft.date=2010-01&rft.volume=115&rft.issue=A1&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JA014468&rft_dat=%3Cproquest_cross%3E36426642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860715733&rft_id=info:pmid/&rfr_iscdi=true |