A linear regression framework for predicting subsurface geometries and displacement rates in deep-seated, slow-moving landslides

A new numerical integration/linear regression tool is used to investigate kinematic behavior in deep-seated (sliding surface deeper than 3 m) mass movements. The technique is developed in the context of real inclinometer records and numerical integration using nine inclinometer case histories from f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering geology 2010-06, Vol.114 (1), p.1-9
1. Verfasser: Kaunda, Rennie B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title Engineering geology
container_volume 114
creator Kaunda, Rennie B.
description A new numerical integration/linear regression tool is used to investigate kinematic behavior in deep-seated (sliding surface deeper than 3 m) mass movements. The technique is developed in the context of real inclinometer records and numerical integration using nine inclinometer case histories from four well documented, large landslides: Carrot River, Montebestia, Karya village, and Pietrapertosa. Axial metric, subsurface geometric deformation rates are predicted and compared for four different case studies from the literature: a reactivated, composite, extremely slow earth slide-earthflow; a reactivated composite, extremely slow debris slide-rock fall; an active, composite, very slow earth slide-earth flow; and a reactivated complex, slow earth slide-earth spread. Sensitivity analysis, based on sliding surface depth-to-length ( D/ L) ratios, show that the mobility of these slow-moving masses is closely dependent on the mode of sliding. The results also show that short term and long term dynamics of slow moving landslides can be captured by geometrical patterns. Because the parameter determined is a geometric property, the technique used in the investigation can be applied in new landslide problems independent of local conditions and triggering mechanisms, within the confines of the stipulated boundary conditions. Hence with this framework also, unrelated landslide problems can be analyzed and compared, as demonstrated herein. Additionally, this approach is useful for two dimensional reconstructions of subsurface displacement and velocity profiles, and thus may act as a precursor to detailed field investigation programs, warning systems and mitigation projects at minimal costs.
doi_str_mv 10.1016/j.enggeo.2010.03.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787052665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013795210000372</els_id><sourcerecordid>787052665</sourcerecordid><originalsourceid>FETCH-LOGICAL-a391t-5956ce2022429f7c839d1d41ac53ec5c0829b4a8572a34341aaf5edee6d513bd3</originalsourceid><addsrcrecordid>eNp9kEtv1DAUhS0EEkPbf8DCG8SGTP2Ik3iDVFU8KlViQ9eWx74ZeUjscG-mVXf8dDyaiiUr6x6fc4_9MfZeiq0Usrs-bCHv91C2SlRJ6K0Q7Su2kUOvms7K_jXbCCF101uj3rJ3RIfTKES_YX9u-JQyeOQIewSiVDIf0c_wVPAXHwvyBSGmsKa853Tc0RFHH4DXuhlWTEDc58hjomWq-gx55ejXKqfMI8DSENQxfuI0ladmLo-nRVPN0JQi0CV7M_qJ4OrlvGAPX7_8vP3e3P_4dnd7c994beXaGGu6AEoo1So79mHQNsrYSh-MhmCCGJTdtX4wvfK61fXCjwZqfxeN1LuoL9jH894Fy-8j0OrmRAGm-hIoR3L90Aujus5UZ3t2BixECKNbMM0en50U7sTbHdyZtzvxdkK7yrvGPrwUeAp-qgxzSPQvq5SV2g66-j6ffVB_-5gAHYUEOVTICGF1saT_F_0F5DOawQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787052665</pqid></control><display><type>article</type><title>A linear regression framework for predicting subsurface geometries and displacement rates in deep-seated, slow-moving landslides</title><source>Elsevier ScienceDirect Journals</source><creator>Kaunda, Rennie B.</creator><creatorcontrib>Kaunda, Rennie B.</creatorcontrib><description>A new numerical integration/linear regression tool is used to investigate kinematic behavior in deep-seated (sliding surface deeper than 3 m) mass movements. The technique is developed in the context of real inclinometer records and numerical integration using nine inclinometer case histories from four well documented, large landslides: Carrot River, Montebestia, Karya village, and Pietrapertosa. Axial metric, subsurface geometric deformation rates are predicted and compared for four different case studies from the literature: a reactivated, composite, extremely slow earth slide-earthflow; a reactivated composite, extremely slow debris slide-rock fall; an active, composite, very slow earth slide-earth flow; and a reactivated complex, slow earth slide-earth spread. Sensitivity analysis, based on sliding surface depth-to-length ( D/ L) ratios, show that the mobility of these slow-moving masses is closely dependent on the mode of sliding. The results also show that short term and long term dynamics of slow moving landslides can be captured by geometrical patterns. Because the parameter determined is a geometric property, the technique used in the investigation can be applied in new landslide problems independent of local conditions and triggering mechanisms, within the confines of the stipulated boundary conditions. Hence with this framework also, unrelated landslide problems can be analyzed and compared, as demonstrated herein. Additionally, this approach is useful for two dimensional reconstructions of subsurface displacement and velocity profiles, and thus may act as a precursor to detailed field investigation programs, warning systems and mitigation projects at minimal costs.</description><identifier>ISSN: 0013-7952</identifier><identifier>EISSN: 1872-6917</identifier><identifier>DOI: 10.1016/j.enggeo.2010.03.004</identifier><identifier>CODEN: EGGOAO</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Displacement ; Earth ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Freshwater ; Gaussian quadrature ; Geometric modeling ; Geotechnics ; Inclinometers ; Landslides ; Linear regression ; Mass movements ; Natural hazards: prediction, damages, etc ; Numerical integration ; Reconstruction ; Regression ; Sliding ; Slope stability ; Soil mechanics. Rocks mechanics ; Spreads ; Structural analysis. Stresses</subject><ispartof>Engineering geology, 2010-06, Vol.114 (1), p.1-9</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a391t-5956ce2022429f7c839d1d41ac53ec5c0829b4a8572a34341aaf5edee6d513bd3</citedby><cites>FETCH-LOGICAL-a391t-5956ce2022429f7c839d1d41ac53ec5c0829b4a8572a34341aaf5edee6d513bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enggeo.2010.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22913983$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaunda, Rennie B.</creatorcontrib><title>A linear regression framework for predicting subsurface geometries and displacement rates in deep-seated, slow-moving landslides</title><title>Engineering geology</title><description>A new numerical integration/linear regression tool is used to investigate kinematic behavior in deep-seated (sliding surface deeper than 3 m) mass movements. The technique is developed in the context of real inclinometer records and numerical integration using nine inclinometer case histories from four well documented, large landslides: Carrot River, Montebestia, Karya village, and Pietrapertosa. Axial metric, subsurface geometric deformation rates are predicted and compared for four different case studies from the literature: a reactivated, composite, extremely slow earth slide-earthflow; a reactivated composite, extremely slow debris slide-rock fall; an active, composite, very slow earth slide-earth flow; and a reactivated complex, slow earth slide-earth spread. Sensitivity analysis, based on sliding surface depth-to-length ( D/ L) ratios, show that the mobility of these slow-moving masses is closely dependent on the mode of sliding. The results also show that short term and long term dynamics of slow moving landslides can be captured by geometrical patterns. Because the parameter determined is a geometric property, the technique used in the investigation can be applied in new landslide problems independent of local conditions and triggering mechanisms, within the confines of the stipulated boundary conditions. Hence with this framework also, unrelated landslide problems can be analyzed and compared, as demonstrated herein. Additionally, this approach is useful for two dimensional reconstructions of subsurface displacement and velocity profiles, and thus may act as a precursor to detailed field investigation programs, warning systems and mitigation projects at minimal costs.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Displacement</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Freshwater</subject><subject>Gaussian quadrature</subject><subject>Geometric modeling</subject><subject>Geotechnics</subject><subject>Inclinometers</subject><subject>Landslides</subject><subject>Linear regression</subject><subject>Mass movements</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Numerical integration</subject><subject>Reconstruction</subject><subject>Regression</subject><subject>Sliding</subject><subject>Slope stability</subject><subject>Soil mechanics. Rocks mechanics</subject><subject>Spreads</subject><subject>Structural analysis. Stresses</subject><issn>0013-7952</issn><issn>1872-6917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1DAUhS0EEkPbf8DCG8SGTP2Ik3iDVFU8KlViQ9eWx74ZeUjscG-mVXf8dDyaiiUr6x6fc4_9MfZeiq0Usrs-bCHv91C2SlRJ6K0Q7Su2kUOvms7K_jXbCCF101uj3rJ3RIfTKES_YX9u-JQyeOQIewSiVDIf0c_wVPAXHwvyBSGmsKa853Tc0RFHH4DXuhlWTEDc58hjomWq-gx55ejXKqfMI8DSENQxfuI0ladmLo-nRVPN0JQi0CV7M_qJ4OrlvGAPX7_8vP3e3P_4dnd7c994beXaGGu6AEoo1So79mHQNsrYSh-MhmCCGJTdtX4wvfK61fXCjwZqfxeN1LuoL9jH894Fy-8j0OrmRAGm-hIoR3L90Aujus5UZ3t2BixECKNbMM0en50U7sTbHdyZtzvxdkK7yrvGPrwUeAp-qgxzSPQvq5SV2g66-j6ffVB_-5gAHYUEOVTICGF1saT_F_0F5DOawQ</recordid><startdate>20100623</startdate><enddate>20100623</enddate><creator>Kaunda, Rennie B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100623</creationdate><title>A linear regression framework for predicting subsurface geometries and displacement rates in deep-seated, slow-moving landslides</title><author>Kaunda, Rennie B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a391t-5956ce2022429f7c839d1d41ac53ec5c0829b4a8572a34341aaf5edee6d513bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Displacement</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Freshwater</topic><topic>Gaussian quadrature</topic><topic>Geometric modeling</topic><topic>Geotechnics</topic><topic>Inclinometers</topic><topic>Landslides</topic><topic>Linear regression</topic><topic>Mass movements</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Numerical integration</topic><topic>Reconstruction</topic><topic>Regression</topic><topic>Sliding</topic><topic>Slope stability</topic><topic>Soil mechanics. Rocks mechanics</topic><topic>Spreads</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaunda, Rennie B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaunda, Rennie B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear regression framework for predicting subsurface geometries and displacement rates in deep-seated, slow-moving landslides</atitle><jtitle>Engineering geology</jtitle><date>2010-06-23</date><risdate>2010</risdate><volume>114</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0013-7952</issn><eissn>1872-6917</eissn><coden>EGGOAO</coden><abstract>A new numerical integration/linear regression tool is used to investigate kinematic behavior in deep-seated (sliding surface deeper than 3 m) mass movements. The technique is developed in the context of real inclinometer records and numerical integration using nine inclinometer case histories from four well documented, large landslides: Carrot River, Montebestia, Karya village, and Pietrapertosa. Axial metric, subsurface geometric deformation rates are predicted and compared for four different case studies from the literature: a reactivated, composite, extremely slow earth slide-earthflow; a reactivated composite, extremely slow debris slide-rock fall; an active, composite, very slow earth slide-earth flow; and a reactivated complex, slow earth slide-earth spread. Sensitivity analysis, based on sliding surface depth-to-length ( D/ L) ratios, show that the mobility of these slow-moving masses is closely dependent on the mode of sliding. The results also show that short term and long term dynamics of slow moving landslides can be captured by geometrical patterns. Because the parameter determined is a geometric property, the technique used in the investigation can be applied in new landslide problems independent of local conditions and triggering mechanisms, within the confines of the stipulated boundary conditions. Hence with this framework also, unrelated landslide problems can be analyzed and compared, as demonstrated herein. Additionally, this approach is useful for two dimensional reconstructions of subsurface displacement and velocity profiles, and thus may act as a precursor to detailed field investigation programs, warning systems and mitigation projects at minimal costs.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enggeo.2010.03.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7952
ispartof Engineering geology, 2010-06, Vol.114 (1), p.1-9
issn 0013-7952
1872-6917
language eng
recordid cdi_proquest_miscellaneous_787052665
source Elsevier ScienceDirect Journals
subjects Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Displacement
Earth
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Freshwater
Gaussian quadrature
Geometric modeling
Geotechnics
Inclinometers
Landslides
Linear regression
Mass movements
Natural hazards: prediction, damages, etc
Numerical integration
Reconstruction
Regression
Sliding
Slope stability
Soil mechanics. Rocks mechanics
Spreads
Structural analysis. Stresses
title A linear regression framework for predicting subsurface geometries and displacement rates in deep-seated, slow-moving landslides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear%20regression%20framework%20for%20predicting%20subsurface%20geometries%20and%20displacement%20rates%20in%20deep-seated,%20slow-moving%20landslides&rft.jtitle=Engineering%20geology&rft.au=Kaunda,%20Rennie%20B.&rft.date=2010-06-23&rft.volume=114&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0013-7952&rft.eissn=1872-6917&rft.coden=EGGOAO&rft_id=info:doi/10.1016/j.enggeo.2010.03.004&rft_dat=%3Cproquest_cross%3E787052665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787052665&rft_id=info:pmid/&rft_els_id=S0013795210000372&rfr_iscdi=true