Approximating the max-edge-coloring problem
The max-edge-coloring problem is a natural weighted generalization of the classical edge-coloring problem arising in the domain of communication systems. In this problem each color class is assigned the weight of the heaviest edge in this class and the objective is to find a proper edge-coloring of...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2010-07, Vol.411 (34), p.3055-3067 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3067 |
---|---|
container_issue | 34 |
container_start_page | 3055 |
container_title | Theoretical computer science |
container_volume | 411 |
creator | Bourgeois, N. Lucarelli, G. Milis, I. Paschos, V.Th |
description | The max-edge-coloring problem is a natural weighted generalization of the classical edge-coloring problem arising in the domain of communication systems. In this problem each color class is assigned the weight of the heaviest edge in this class and the objective is to find a proper edge-coloring of the input graph minimizing the sum of all color classes’ weights. We present new approximation results, that improve substantially the known ones, for several variants of the problem with respect to the class of the underlying graph. In particular, we deal with variants which are known to be NP-hard (general and bipartite graphs) or are proven to be NP-hard in this paper (complete graphs with bi-valued edge weights) or whose complexity question still remains open (trees). |
doi_str_mv | 10.1016/j.tcs.2010.04.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787052339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397510002483</els_id><sourcerecordid>787052339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-6aa06299da7c22f782268bd5bee65dea2262505e4c24145f4b1576ce71886d343</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFsv4kF2nXxtdvFUil9Q8KLnkE1ma8p-1GQr9d-b0uLRuQwzPDPvzEvINYWcAi3u1_loY84g1SBy4PSETGipqoyxSpySCXAQGa-UPCcXMa4hhVTFhNzNN5sw7HxnRt-vZuMnzjqzy9CtMLNDO4R9NxF1i90lOWtMG_HqmKfk4-nxffGSLd-eXxfzZWYFsDErjIGCVZUzyjLWqJKxoqydrBEL6dCkkkmQKCwTVMhG1DSdYlHRsiwcF3xKbg97k-7XFuOoOx8ttq3pcdhGrUoFknFeJZIeSBuGGAM2ehPSK-FHU9B7X_RaJ1_03hcNQidf0szNcbuJ1rRNML318W-QcaASFCTu4cBhevXbY9DReuwtOh_QjtoN_h-VX4GwdkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787052339</pqid></control><display><type>article</type><title>Approximating the max-edge-coloring problem</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bourgeois, N. ; Lucarelli, G. ; Milis, I. ; Paschos, V.Th</creator><creatorcontrib>Bourgeois, N. ; Lucarelli, G. ; Milis, I. ; Paschos, V.Th</creatorcontrib><description>The max-edge-coloring problem is a natural weighted generalization of the classical edge-coloring problem arising in the domain of communication systems. In this problem each color class is assigned the weight of the heaviest edge in this class and the objective is to find a proper edge-coloring of the input graph minimizing the sum of all color classes’ weights. We present new approximation results, that improve substantially the known ones, for several variants of the problem with respect to the class of the underlying graph. In particular, we deal with variants which are known to be NP-hard (general and bipartite graphs) or are proven to be NP-hard in this paper (complete graphs with bi-valued edge weights) or whose complexity question still remains open (trees).</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2010.04.031</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation ; Approximation algorithms ; C (programming language) ; Color ; Combinatorics ; Combinatorics. Ordered structures ; Communication systems ; Complexity ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Graphs ; Information retrieval. Graph ; Mathematical analysis ; Mathematics ; Max-edge-coloring ; Miscellaneous ; Sciences and techniques of general use ; Theoretical computing ; Trees</subject><ispartof>Theoretical computer science, 2010-07, Vol.411 (34), p.3055-3067</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-6aa06299da7c22f782268bd5bee65dea2262505e4c24145f4b1576ce71886d343</citedby><cites>FETCH-LOGICAL-c402t-6aa06299da7c22f782268bd5bee65dea2262505e4c24145f4b1576ce71886d343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2010.04.031$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23015070$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourgeois, N.</creatorcontrib><creatorcontrib>Lucarelli, G.</creatorcontrib><creatorcontrib>Milis, I.</creatorcontrib><creatorcontrib>Paschos, V.Th</creatorcontrib><title>Approximating the max-edge-coloring problem</title><title>Theoretical computer science</title><description>The max-edge-coloring problem is a natural weighted generalization of the classical edge-coloring problem arising in the domain of communication systems. In this problem each color class is assigned the weight of the heaviest edge in this class and the objective is to find a proper edge-coloring of the input graph minimizing the sum of all color classes’ weights. We present new approximation results, that improve substantially the known ones, for several variants of the problem with respect to the class of the underlying graph. In particular, we deal with variants which are known to be NP-hard (general and bipartite graphs) or are proven to be NP-hard in this paper (complete graphs with bi-valued edge weights) or whose complexity question still remains open (trees).</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>C (programming language)</subject><subject>Color</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Communication systems</subject><subject>Complexity</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Max-edge-coloring</subject><subject>Miscellaneous</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><subject>Trees</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFsv4kF2nXxtdvFUil9Q8KLnkE1ma8p-1GQr9d-b0uLRuQwzPDPvzEvINYWcAi3u1_loY84g1SBy4PSETGipqoyxSpySCXAQGa-UPCcXMa4hhVTFhNzNN5sw7HxnRt-vZuMnzjqzy9CtMLNDO4R9NxF1i90lOWtMG_HqmKfk4-nxffGSLd-eXxfzZWYFsDErjIGCVZUzyjLWqJKxoqydrBEL6dCkkkmQKCwTVMhG1DSdYlHRsiwcF3xKbg97k-7XFuOoOx8ttq3pcdhGrUoFknFeJZIeSBuGGAM2ehPSK-FHU9B7X_RaJ1_03hcNQidf0szNcbuJ1rRNML318W-QcaASFCTu4cBhevXbY9DReuwtOh_QjtoN_h-VX4GwdkU</recordid><startdate>20100717</startdate><enddate>20100717</enddate><creator>Bourgeois, N.</creator><creator>Lucarelli, G.</creator><creator>Milis, I.</creator><creator>Paschos, V.Th</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100717</creationdate><title>Approximating the max-edge-coloring problem</title><author>Bourgeois, N. ; Lucarelli, G. ; Milis, I. ; Paschos, V.Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-6aa06299da7c22f782268bd5bee65dea2262505e4c24145f4b1576ce71886d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>C (programming language)</topic><topic>Color</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Communication systems</topic><topic>Complexity</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Max-edge-coloring</topic><topic>Miscellaneous</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourgeois, N.</creatorcontrib><creatorcontrib>Lucarelli, G.</creatorcontrib><creatorcontrib>Milis, I.</creatorcontrib><creatorcontrib>Paschos, V.Th</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourgeois, N.</au><au>Lucarelli, G.</au><au>Milis, I.</au><au>Paschos, V.Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating the max-edge-coloring problem</atitle><jtitle>Theoretical computer science</jtitle><date>2010-07-17</date><risdate>2010</risdate><volume>411</volume><issue>34</issue><spage>3055</spage><epage>3067</epage><pages>3055-3067</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>The max-edge-coloring problem is a natural weighted generalization of the classical edge-coloring problem arising in the domain of communication systems. In this problem each color class is assigned the weight of the heaviest edge in this class and the objective is to find a proper edge-coloring of the input graph minimizing the sum of all color classes’ weights. We present new approximation results, that improve substantially the known ones, for several variants of the problem with respect to the class of the underlying graph. In particular, we deal with variants which are known to be NP-hard (general and bipartite graphs) or are proven to be NP-hard in this paper (complete graphs with bi-valued edge weights) or whose complexity question still remains open (trees).</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2010.04.031</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2010-07, Vol.411 (34), p.3055-3067 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_787052339 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Approximation Approximation algorithms C (programming language) Color Combinatorics Combinatorics. Ordered structures Communication systems Complexity Computer science control theory systems Exact sciences and technology Graph theory Graphs Information retrieval. Graph Mathematical analysis Mathematics Max-edge-coloring Miscellaneous Sciences and techniques of general use Theoretical computing Trees |
title | Approximating the max-edge-coloring problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20the%20max-edge-coloring%20problem&rft.jtitle=Theoretical%20computer%20science&rft.au=Bourgeois,%20N.&rft.date=2010-07-17&rft.volume=411&rft.issue=34&rft.spage=3055&rft.epage=3067&rft.pages=3055-3067&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2010.04.031&rft_dat=%3Cproquest_cross%3E787052339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787052339&rft_id=info:pmid/&rft_els_id=S0304397510002483&rfr_iscdi=true |