Approximating the max-edge-coloring problem

The max-edge-coloring problem is a natural weighted generalization of the classical edge-coloring problem arising in the domain of communication systems. In this problem each color class is assigned the weight of the heaviest edge in this class and the objective is to find a proper edge-coloring of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2010-07, Vol.411 (34), p.3055-3067
Hauptverfasser: Bourgeois, N., Lucarelli, G., Milis, I., Paschos, V.Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3067
container_issue 34
container_start_page 3055
container_title Theoretical computer science
container_volume 411
creator Bourgeois, N.
Lucarelli, G.
Milis, I.
Paschos, V.Th
description The max-edge-coloring problem is a natural weighted generalization of the classical edge-coloring problem arising in the domain of communication systems. In this problem each color class is assigned the weight of the heaviest edge in this class and the objective is to find a proper edge-coloring of the input graph minimizing the sum of all color classes’ weights. We present new approximation results, that improve substantially the known ones, for several variants of the problem with respect to the class of the underlying graph. In particular, we deal with variants which are known to be NP-hard (general and bipartite graphs) or are proven to be NP-hard in this paper (complete graphs with bi-valued edge weights) or whose complexity question still remains open (trees).
doi_str_mv 10.1016/j.tcs.2010.04.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787052339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397510002483</els_id><sourcerecordid>787052339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-6aa06299da7c22f782268bd5bee65dea2262505e4c24145f4b1576ce71886d343</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFsv4kF2nXxtdvFUil9Q8KLnkE1ma8p-1GQr9d-b0uLRuQwzPDPvzEvINYWcAi3u1_loY84g1SBy4PSETGipqoyxSpySCXAQGa-UPCcXMa4hhVTFhNzNN5sw7HxnRt-vZuMnzjqzy9CtMLNDO4R9NxF1i90lOWtMG_HqmKfk4-nxffGSLd-eXxfzZWYFsDErjIGCVZUzyjLWqJKxoqydrBEL6dCkkkmQKCwTVMhG1DSdYlHRsiwcF3xKbg97k-7XFuOoOx8ttq3pcdhGrUoFknFeJZIeSBuGGAM2ehPSK-FHU9B7X_RaJ1_03hcNQidf0szNcbuJ1rRNML318W-QcaASFCTu4cBhevXbY9DReuwtOh_QjtoN_h-VX4GwdkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787052339</pqid></control><display><type>article</type><title>Approximating the max-edge-coloring problem</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bourgeois, N. ; Lucarelli, G. ; Milis, I. ; Paschos, V.Th</creator><creatorcontrib>Bourgeois, N. ; Lucarelli, G. ; Milis, I. ; Paschos, V.Th</creatorcontrib><description>The max-edge-coloring problem is a natural weighted generalization of the classical edge-coloring problem arising in the domain of communication systems. In this problem each color class is assigned the weight of the heaviest edge in this class and the objective is to find a proper edge-coloring of the input graph minimizing the sum of all color classes’ weights. We present new approximation results, that improve substantially the known ones, for several variants of the problem with respect to the class of the underlying graph. In particular, we deal with variants which are known to be NP-hard (general and bipartite graphs) or are proven to be NP-hard in this paper (complete graphs with bi-valued edge weights) or whose complexity question still remains open (trees).</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2010.04.031</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation ; Approximation algorithms ; C (programming language) ; Color ; Combinatorics ; Combinatorics. Ordered structures ; Communication systems ; Complexity ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Graphs ; Information retrieval. Graph ; Mathematical analysis ; Mathematics ; Max-edge-coloring ; Miscellaneous ; Sciences and techniques of general use ; Theoretical computing ; Trees</subject><ispartof>Theoretical computer science, 2010-07, Vol.411 (34), p.3055-3067</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-6aa06299da7c22f782268bd5bee65dea2262505e4c24145f4b1576ce71886d343</citedby><cites>FETCH-LOGICAL-c402t-6aa06299da7c22f782268bd5bee65dea2262505e4c24145f4b1576ce71886d343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2010.04.031$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23015070$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourgeois, N.</creatorcontrib><creatorcontrib>Lucarelli, G.</creatorcontrib><creatorcontrib>Milis, I.</creatorcontrib><creatorcontrib>Paschos, V.Th</creatorcontrib><title>Approximating the max-edge-coloring problem</title><title>Theoretical computer science</title><description>The max-edge-coloring problem is a natural weighted generalization of the classical edge-coloring problem arising in the domain of communication systems. In this problem each color class is assigned the weight of the heaviest edge in this class and the objective is to find a proper edge-coloring of the input graph minimizing the sum of all color classes’ weights. We present new approximation results, that improve substantially the known ones, for several variants of the problem with respect to the class of the underlying graph. In particular, we deal with variants which are known to be NP-hard (general and bipartite graphs) or are proven to be NP-hard in this paper (complete graphs with bi-valued edge weights) or whose complexity question still remains open (trees).</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>C (programming language)</subject><subject>Color</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Communication systems</subject><subject>Complexity</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Max-edge-coloring</subject><subject>Miscellaneous</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><subject>Trees</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFsv4kF2nXxtdvFUil9Q8KLnkE1ma8p-1GQr9d-b0uLRuQwzPDPvzEvINYWcAi3u1_loY84g1SBy4PSETGipqoyxSpySCXAQGa-UPCcXMa4hhVTFhNzNN5sw7HxnRt-vZuMnzjqzy9CtMLNDO4R9NxF1i90lOWtMG_HqmKfk4-nxffGSLd-eXxfzZWYFsDErjIGCVZUzyjLWqJKxoqydrBEL6dCkkkmQKCwTVMhG1DSdYlHRsiwcF3xKbg97k-7XFuOoOx8ttq3pcdhGrUoFknFeJZIeSBuGGAM2ehPSK-FHU9B7X_RaJ1_03hcNQidf0szNcbuJ1rRNML318W-QcaASFCTu4cBhevXbY9DReuwtOh_QjtoN_h-VX4GwdkU</recordid><startdate>20100717</startdate><enddate>20100717</enddate><creator>Bourgeois, N.</creator><creator>Lucarelli, G.</creator><creator>Milis, I.</creator><creator>Paschos, V.Th</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100717</creationdate><title>Approximating the max-edge-coloring problem</title><author>Bourgeois, N. ; Lucarelli, G. ; Milis, I. ; Paschos, V.Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-6aa06299da7c22f782268bd5bee65dea2262505e4c24145f4b1576ce71886d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>C (programming language)</topic><topic>Color</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Communication systems</topic><topic>Complexity</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Max-edge-coloring</topic><topic>Miscellaneous</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourgeois, N.</creatorcontrib><creatorcontrib>Lucarelli, G.</creatorcontrib><creatorcontrib>Milis, I.</creatorcontrib><creatorcontrib>Paschos, V.Th</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourgeois, N.</au><au>Lucarelli, G.</au><au>Milis, I.</au><au>Paschos, V.Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating the max-edge-coloring problem</atitle><jtitle>Theoretical computer science</jtitle><date>2010-07-17</date><risdate>2010</risdate><volume>411</volume><issue>34</issue><spage>3055</spage><epage>3067</epage><pages>3055-3067</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>The max-edge-coloring problem is a natural weighted generalization of the classical edge-coloring problem arising in the domain of communication systems. In this problem each color class is assigned the weight of the heaviest edge in this class and the objective is to find a proper edge-coloring of the input graph minimizing the sum of all color classes’ weights. We present new approximation results, that improve substantially the known ones, for several variants of the problem with respect to the class of the underlying graph. In particular, we deal with variants which are known to be NP-hard (general and bipartite graphs) or are proven to be NP-hard in this paper (complete graphs with bi-valued edge weights) or whose complexity question still remains open (trees).</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2010.04.031</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2010-07, Vol.411 (34), p.3055-3067
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_787052339
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximation
Approximation algorithms
C (programming language)
Color
Combinatorics
Combinatorics. Ordered structures
Communication systems
Complexity
Computer science
control theory
systems
Exact sciences and technology
Graph theory
Graphs
Information retrieval. Graph
Mathematical analysis
Mathematics
Max-edge-coloring
Miscellaneous
Sciences and techniques of general use
Theoretical computing
Trees
title Approximating the max-edge-coloring problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20the%20max-edge-coloring%20problem&rft.jtitle=Theoretical%20computer%20science&rft.au=Bourgeois,%20N.&rft.date=2010-07-17&rft.volume=411&rft.issue=34&rft.spage=3055&rft.epage=3067&rft.pages=3055-3067&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2010.04.031&rft_dat=%3Cproquest_cross%3E787052339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787052339&rft_id=info:pmid/&rft_els_id=S0304397510002483&rfr_iscdi=true