Low percolation threshold conductive device derived from a five-component polymer blend

In this work we report on the preparation of a solid, 3D, low percolation threshold conductive device prepared through the control of multiple encapsulation and multiple percolation effects in a 5 component polymer blend system through melt processing. Conductive polyaniline (PANI) is situated in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2010-07, Vol.51 (16), p.3669-3684
Hauptverfasser: Ravati, Sepehr, Favis, Basil D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3684
container_issue 16
container_start_page 3669
container_title Polymer (Guilford)
container_volume 51
creator Ravati, Sepehr
Favis, Basil D.
description In this work we report on the preparation of a solid, 3D, low percolation threshold conductive device prepared through the control of multiple encapsulation and multiple percolation effects in a 5 component polymer blend system through melt processing. Conductive polyaniline (PANI) is situated in the core of the 5 component continuous system comprised of high-density polyethylene (HDPE), polystyrene (PS), poly(methyl methacrylate)(PMMA) and poly(vinylidene fluoride)(PVDF). In this fashion, its percolation threshold can be reduced to below 5 vol%. The approach used here is thermodynamically controlled and is described by Harkins spreading theory. In this work the detailed morphology and continuity diagrams of binary, ternary, quaternary and finally quinary systems are progressively studied in order to systematically demonstrate the concentration regimes resulting in the formation of these novel multiple-encapsulated morphological structures. Initially, onion-type dispersed phase structures are prepared and it is shown that through the control of the composition of the inner and outer layers the morphology can be transformed to a hierarchical-self-assembled, multi-percolated structure. The influence of a copolymer on selected pairs in the encapsulated structure is also examined. The conductivity of the quinary blend system can be increased from 10−15 S cm−1 (pure HDPE) to 10−5 S cm−1 at 5 vol% PANI and up to 10−3 S cm−1 for 10 vol% PANI. These are the highest conductivity values ever reported for these PANI concentrations in melt processed systems. [Display omitted]
doi_str_mv 10.1016/j.polymer.2010.06.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787049160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003238611000515X</els_id><sourcerecordid>787049160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-9369c4bd099aec66de8a616b1e34c5c845230b99a8e91d596c6ab75d99b3cff93</originalsourceid><addsrcrecordid>eNqFUMGK2zAQFUsXNt3tJyzosuzJ6ciyZetUSui2hUAvLT0KeTQmCrbllZws-ftVSOi1p2Fm3pv35jH2KGAtQKjP-_UchtNIcV1CnoFag6hv2Eq0jSzKUosPbAUgy0K2StyxjyntAaCsy2rF_m7DG58pYhjs4sPEl12ktAuD4xgmd8DFH4k7Ono8l5g7x_sYRm55n5sCwziHiaaFX03wbqDJPbDb3g6JPl3rPfvz8u335kex_fX95-brtsBKNkuhpdJYdQ60toRKOWqtEqoTJCussa3qUkKXly1p4WqtUNmuqZ3WncS-1_KePV_uzjG8HigtZvQJaRjsROGQTNM2UGmhICPrCxJjSClSb-boRxtPRoA552j25vqCOedoQJmcY-Y9XRVsQjv00U7o0z9y9teUoNuM-3LBUX736POVhJ4mJOcj4WJc8P9RegcmTY1O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787049160</pqid></control><display><type>article</type><title>Low percolation threshold conductive device derived from a five-component polymer blend</title><source>Elsevier ScienceDirect Journals</source><creator>Ravati, Sepehr ; Favis, Basil D.</creator><creatorcontrib>Ravati, Sepehr ; Favis, Basil D.</creatorcontrib><description>In this work we report on the preparation of a solid, 3D, low percolation threshold conductive device prepared through the control of multiple encapsulation and multiple percolation effects in a 5 component polymer blend system through melt processing. Conductive polyaniline (PANI) is situated in the core of the 5 component continuous system comprised of high-density polyethylene (HDPE), polystyrene (PS), poly(methyl methacrylate)(PMMA) and poly(vinylidene fluoride)(PVDF). In this fashion, its percolation threshold can be reduced to below 5 vol%. The approach used here is thermodynamically controlled and is described by Harkins spreading theory. In this work the detailed morphology and continuity diagrams of binary, ternary, quaternary and finally quinary systems are progressively studied in order to systematically demonstrate the concentration regimes resulting in the formation of these novel multiple-encapsulated morphological structures. Initially, onion-type dispersed phase structures are prepared and it is shown that through the control of the composition of the inner and outer layers the morphology can be transformed to a hierarchical-self-assembled, multi-percolated structure. The influence of a copolymer on selected pairs in the encapsulated structure is also examined. The conductivity of the quinary blend system can be increased from 10−15 S cm−1 (pure HDPE) to 10−5 S cm−1 at 5 vol% PANI and up to 10−3 S cm−1 for 10 vol% PANI. These are the highest conductivity values ever reported for these PANI concentrations in melt processed systems. [Display omitted]</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2010.06.015</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Conductive ; Devices ; Electrical, magnetic and optical properties ; Encapsulation ; Exact sciences and technology ; Melts ; Morphology ; Organic polymers ; Percolation ; Physicochemistry of polymers ; Polyethylenes ; Polymer blend ; Polymer blends ; Polystyrene resins ; Properties and characterization ; Three dimensional ; Thresholds</subject><ispartof>Polymer (Guilford), 2010-07, Vol.51 (16), p.3669-3684</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-9369c4bd099aec66de8a616b1e34c5c845230b99a8e91d596c6ab75d99b3cff93</citedby><cites>FETCH-LOGICAL-c437t-9369c4bd099aec66de8a616b1e34c5c845230b99a8e91d596c6ab75d99b3cff93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003238611000515X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23072098$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravati, Sepehr</creatorcontrib><creatorcontrib>Favis, Basil D.</creatorcontrib><title>Low percolation threshold conductive device derived from a five-component polymer blend</title><title>Polymer (Guilford)</title><description>In this work we report on the preparation of a solid, 3D, low percolation threshold conductive device prepared through the control of multiple encapsulation and multiple percolation effects in a 5 component polymer blend system through melt processing. Conductive polyaniline (PANI) is situated in the core of the 5 component continuous system comprised of high-density polyethylene (HDPE), polystyrene (PS), poly(methyl methacrylate)(PMMA) and poly(vinylidene fluoride)(PVDF). In this fashion, its percolation threshold can be reduced to below 5 vol%. The approach used here is thermodynamically controlled and is described by Harkins spreading theory. In this work the detailed morphology and continuity diagrams of binary, ternary, quaternary and finally quinary systems are progressively studied in order to systematically demonstrate the concentration regimes resulting in the formation of these novel multiple-encapsulated morphological structures. Initially, onion-type dispersed phase structures are prepared and it is shown that through the control of the composition of the inner and outer layers the morphology can be transformed to a hierarchical-self-assembled, multi-percolated structure. The influence of a copolymer on selected pairs in the encapsulated structure is also examined. The conductivity of the quinary blend system can be increased from 10−15 S cm−1 (pure HDPE) to 10−5 S cm−1 at 5 vol% PANI and up to 10−3 S cm−1 for 10 vol% PANI. These are the highest conductivity values ever reported for these PANI concentrations in melt processed systems. [Display omitted]</description><subject>Applied sciences</subject><subject>Conductive</subject><subject>Devices</subject><subject>Electrical, magnetic and optical properties</subject><subject>Encapsulation</subject><subject>Exact sciences and technology</subject><subject>Melts</subject><subject>Morphology</subject><subject>Organic polymers</subject><subject>Percolation</subject><subject>Physicochemistry of polymers</subject><subject>Polyethylenes</subject><subject>Polymer blend</subject><subject>Polymer blends</subject><subject>Polystyrene resins</subject><subject>Properties and characterization</subject><subject>Three dimensional</subject><subject>Thresholds</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUMGK2zAQFUsXNt3tJyzosuzJ6ciyZetUSui2hUAvLT0KeTQmCrbllZws-ftVSOi1p2Fm3pv35jH2KGAtQKjP-_UchtNIcV1CnoFag6hv2Eq0jSzKUosPbAUgy0K2StyxjyntAaCsy2rF_m7DG58pYhjs4sPEl12ktAuD4xgmd8DFH4k7Ono8l5g7x_sYRm55n5sCwziHiaaFX03wbqDJPbDb3g6JPl3rPfvz8u335kex_fX95-brtsBKNkuhpdJYdQ60toRKOWqtEqoTJCussa3qUkKXly1p4WqtUNmuqZ3WncS-1_KePV_uzjG8HigtZvQJaRjsROGQTNM2UGmhICPrCxJjSClSb-boRxtPRoA552j25vqCOedoQJmcY-Y9XRVsQjv00U7o0z9y9teUoNuM-3LBUX736POVhJ4mJOcj4WJc8P9RegcmTY1O</recordid><startdate>20100722</startdate><enddate>20100722</enddate><creator>Ravati, Sepehr</creator><creator>Favis, Basil D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20100722</creationdate><title>Low percolation threshold conductive device derived from a five-component polymer blend</title><author>Ravati, Sepehr ; Favis, Basil D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-9369c4bd099aec66de8a616b1e34c5c845230b99a8e91d596c6ab75d99b3cff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Conductive</topic><topic>Devices</topic><topic>Electrical, magnetic and optical properties</topic><topic>Encapsulation</topic><topic>Exact sciences and technology</topic><topic>Melts</topic><topic>Morphology</topic><topic>Organic polymers</topic><topic>Percolation</topic><topic>Physicochemistry of polymers</topic><topic>Polyethylenes</topic><topic>Polymer blend</topic><topic>Polymer blends</topic><topic>Polystyrene resins</topic><topic>Properties and characterization</topic><topic>Three dimensional</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravati, Sepehr</creatorcontrib><creatorcontrib>Favis, Basil D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravati, Sepehr</au><au>Favis, Basil D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low percolation threshold conductive device derived from a five-component polymer blend</atitle><jtitle>Polymer (Guilford)</jtitle><date>2010-07-22</date><risdate>2010</risdate><volume>51</volume><issue>16</issue><spage>3669</spage><epage>3684</epage><pages>3669-3684</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>In this work we report on the preparation of a solid, 3D, low percolation threshold conductive device prepared through the control of multiple encapsulation and multiple percolation effects in a 5 component polymer blend system through melt processing. Conductive polyaniline (PANI) is situated in the core of the 5 component continuous system comprised of high-density polyethylene (HDPE), polystyrene (PS), poly(methyl methacrylate)(PMMA) and poly(vinylidene fluoride)(PVDF). In this fashion, its percolation threshold can be reduced to below 5 vol%. The approach used here is thermodynamically controlled and is described by Harkins spreading theory. In this work the detailed morphology and continuity diagrams of binary, ternary, quaternary and finally quinary systems are progressively studied in order to systematically demonstrate the concentration regimes resulting in the formation of these novel multiple-encapsulated morphological structures. Initially, onion-type dispersed phase structures are prepared and it is shown that through the control of the composition of the inner and outer layers the morphology can be transformed to a hierarchical-self-assembled, multi-percolated structure. The influence of a copolymer on selected pairs in the encapsulated structure is also examined. The conductivity of the quinary blend system can be increased from 10−15 S cm−1 (pure HDPE) to 10−5 S cm−1 at 5 vol% PANI and up to 10−3 S cm−1 for 10 vol% PANI. These are the highest conductivity values ever reported for these PANI concentrations in melt processed systems. [Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2010.06.015</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2010-07, Vol.51 (16), p.3669-3684
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_miscellaneous_787049160
source Elsevier ScienceDirect Journals
subjects Applied sciences
Conductive
Devices
Electrical, magnetic and optical properties
Encapsulation
Exact sciences and technology
Melts
Morphology
Organic polymers
Percolation
Physicochemistry of polymers
Polyethylenes
Polymer blend
Polymer blends
Polystyrene resins
Properties and characterization
Three dimensional
Thresholds
title Low percolation threshold conductive device derived from a five-component polymer blend
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20percolation%20threshold%20conductive%20device%20derived%20from%20a%20five-component%20polymer%20blend&rft.jtitle=Polymer%20(Guilford)&rft.au=Ravati,%20Sepehr&rft.date=2010-07-22&rft.volume=51&rft.issue=16&rft.spage=3669&rft.epage=3684&rft.pages=3669-3684&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2010.06.015&rft_dat=%3Cproquest_cross%3E787049160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787049160&rft_id=info:pmid/&rft_els_id=S003238611000515X&rfr_iscdi=true